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ABSTRACT

Low-conductivity media are found in a vast number of applications, for example as electrical

insulation or as the matrix polymer in high strength-to-weight ratio structural composites.

In some applications, these materials are subjected to extreme environmental, thermal, and

mechanical conditions that can affect the material’s desired performance. In a more general

sense, a medium may be comprised of one or more layers with unknown material properties

that may affect the desired performance of the entire structure. It is often, therefore, of great

import to be able to characterize the material properties of these media for the purpose of

estimating their future performance in a certain application.

Low-conductivity media, or dielectrics, are poor electrical conductors and permit electro-

magnetic waves and static electric fields to pass through with minimal attenuation. The amount

of electrical energy that may be stored (and lost) in these fields depends directly upon the ma-

terial property, permittivity, which is generally complex, frequency-dependent and has a mea-

surable effect on sensors designed to characterize dielectric media. In this work, two different

types of dielectric sensors: radio frequency resonant antennas and lower-frequency (< 1 MHz)

capacitive sensors, are designed for permittivity characterization in their respective frequency

regimes.

In the first part of this work, the capability of characterizing multilayer dielectric structures

is studied using a patch antenna, a type of antenna that is primarily designed for data commu-

nications in the microwave bands but has application in the field of nondestructive evaluation

as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode)

frequency that is dependent upon the antenna’s substrate material and geometry as well as the

permittivity and geometry of exterior materials. Here, an extant forward model is validated us-

ing well-characterized microwave samples and a new method of resonant frequency and quality

factor determination from measured data is presented. Excellent agreement between calculated
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and measured values of sensor resonant frequency was obtained for the samples studied. Agree-

ment between calculated and measured quality factor was good in some cases but incurred the

particular challenge of accurately quantifying multiple contributions to loss from the sensor

structure itself, which at times dominates the contribution due to the sample material.

Two later chapters describe the development of capacitive sensors to quantify the low-

frequency changes in material permittivity due to environmental aging mechanisms. One em-

bodiment involves the application of coplanar concentric interdigital electrode sensors for the

purpose of investigating polymer-matrix degradation in glass-fiber composites due to isother-

mal aging. Samples of bismaleimide-matrix glass-fiber composites were aged at several high

temperatures to induce thermal degradation and capacitive sensors were used to measure the

sensor capacitance and dissipation factor, parameters that are directly proportional to the

real and imaginary components of complex permittivity, respectively. It was shown that real

permittivity and dissipation factor decreased with increasing aging temperature, a trend that

was common to both interdigital sensor measurements and standard parallel plate electrode

measurements. The second piece of work involves the development of cylindrical interdigital

electrode sensors to characterize complex permittivity changes in wire insulation due to aging-

related degradation. The sensor was proven effective in detecting changes in irradiated nuclear

power plant wiring insulation and in aircraft wiring insulation due to liquid chemical immer-

sion. In all three cases, the results indicate a clear correlation of measured capacitance and

dissipation factor with increased degradation.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Research question

The research herein is divided into two parts, both with the common goal of characterizing

low-conductivity media. The first part has the aim of designing and validating a potentially-

portable nondestructive evaluation (NDE) sensor capable of measuring changes in complex

permittivity in the X-band (8-12 GHz) of one layer of a single- or multilayer structure, provided

all other permittivity and all layer thicknesses are known. The approach is to use a theoretical

model, previously developed for standard communications bands (1-4 GHz) operation, to design

and optimize a physical X-band operational sensor that can characterize low-conductivity media

in its near field by measuring changes to its resonant frequency and quality factor.

The goal of the second part of this research is to design NDE capacitive sensors for effective

detection and characterization of aging-related dielectric changes in the polymeric insulation

of aviation and nuclear power plant control cables, as well as in low-conductivity structural

polymer-matrix composites. In both types of applications here mentioned, the approach is to

develop capacitive sensors that are capable of interrogating samples from their exterior surface

and observe capacitance and dissipation factor changes as a function of thermal, radiation, and

liquid chemical aging.

1.2 Literature survey

1.2.1 Radio frequency sensing

Radio frequencies are broadly defined as the range of oscillating electromagnetic signals

between 3 kHz and 300 GHz. Within this range, many different applications are found. For

example, amplitude-modulated (AM) radio stations in the Americas operate between generally
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540 kHz and 1.710 MHz; frequency-modulated (FM) radio stations operate between 88 MHz

and 108 MHz; cellular devices operate generally between 400 MHz and 2.6 GHz; microwave

ovens operate at 2.45 GHz, close to a dielectric relaxation frequency of water; and radar systems

operate throughout nearly the entire RF range. Radio frequencies are often divided into low fre-

quencies and high frequencies, with the high frequencies known as microwaves, which generally

fit the range between 300 MHz and 300 GHz. Low frequencies, below ∼1 MHz, say, are useful

in general circuit design where connecting wires and traces are viewed as simple short circuits,

spaces between them are viewed as open circuits, and Ohm’s law relating resistance, voltage and

current is well-obeyed, provided that the circuit traces and components are much smaller than

the wavelength corresponding to the operating frequency of the circuit. For measuring sam-

ple permittivity, this makes measurements using resistor-inductor-capacitor (RLC) component

resonance methods or devices such as parallel plate electrodes and inductance-capacitance-

resistance (LCR) meters relatively simple, and can provide reliable dielectric spectroscopy data

up to the 1 MHz range [1].

Where microwave frequencies are of interest in characterizing a dielectric sample, more

complex methods must be utilized. This is due to the fact that the operating wavelengths

involved are often on the same order as the physical dimensions of the cables, sensors and test-

pieces. The cables and sensors begin to act more like transmission lines, generally at frequencies

of about 100 MHz, where the composition of the conductors, insulation, and geometry all have

an effect on the measurable quantities. Microwaves cannot simply be transmitted down a length

of wire as a low-frequency current, their electromagnetic fields must be guided down a path

with specific properties to reach a destination point with minimal attenuation.

One type of transmission line that can guide microwaves toward a sample for dielectric

characterization is a waveguide. A standard waveguide is a hollow rectangular or coaxial cylin-

drical conductor with dimensions that permit specific frequencies to propagate from end to end

unattenuated. In [2] a circular coaxial waveguide is used to hold a disc-shaped sample, shown

in Figure 1.1, and a microwave pulse is transmitted toward the sample. The reflection and

transmission coefficients are measured via a time-domain approach and the complex permittiv-

ity and permeability values of the sample are obtained. In [3], a flanged waveguide, Figure 1.2,
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Figure 1.1 Cross-section view of a circular coaxial waveguide design (a) and signal flow graph

(b) for complex dielectric and magnetic characterization. The sample, with thick-

ness d is placed in the center of the waveguide, and the reflection and transmission

coefficients are measured [2].

Figure 1.2 Cross-section view of a flanged waveguide in contact with a groundplane-backed di-

electric sample. Measured reflection coefficients are used to determine the complex

permittivity [3].

a waveguide with a flanged termination is used to make one-sided dielectric measurements of a

dielectric sample backed by a perfect electrical conductor (PEC). This setup has the advantage

of not requiring a piece of a sample to be specially shaped for insertion into a waveguide.

Another type of microwave dielectric characterization device is a cavity resonator. Similar

to a waveguide, a cavity is designed to confine microwave energy with the exception that only

standing waves rather than travelling waves are physically permitted. The wavelength of the

standing wave is dependent upon the material within the cavity, thus the resonant frequency of

the cavity is tuned by a sample material placed inside. In [4], a circular cavity is developed to
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Figure 1.3 Isometric view of a microstrip transmission line protected in a shielded box. Above

the strip is placed a dielectric sample (not pictured), which creates a measurable

discontinuity in the characteristic impedance of the microstrip [6].

determine the complex permittivity of disc-shaped low-loss media samples by measuring both

the resonant frequency and quality factor (Q-factor), which a measure of energy storage relative

to energy loss. A cavity resonator for rod-shaped or liquid specimens was developed in [5] by

use of perturbation theory with excellent agreement found between theory and experimental

results.

Microstrip lines are another type of microwave transmission line designed to guide mi-

crowave energy between points of interest. Comprised of a conductive strip above a groundplane

with a dielectric substrate supporting the strip, microwave energy travels partially through the

substrate region between the strip and groundplane and partially in the air above the strip.

In [6], a testing setup is developed that places a dielectric sample above the strip, creating

a characteristic impedance discontinuity, which alters the reflection and transmission coeffi-

cients that yield the sample permittivity. Figure 1.3 shows the setup used in the microstrip

characterization setup.

Finally, microwaves can be transmitted into free space by way of antennas, which can

also be used to characterize dielectric samples. An antenna, put simply, is a structure that

acts as a transition between a transmission line (such as a waveguide) and free space for

directional or omnidirectional transmission. In [7], a pair of highly-directive horn antennas

act as a transmitting and receiving antenna at 35 GHz, with either an isotropic or anisotropic

dielectric sample placed in between, as shown in Figure 1.4. In that work, a single antenna
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Figure 1.4 System schematic of a through-transmission microwave dielectric measurement

setup. Two horn antennas are used to transmit and receive microwave signals, and

reflection and transmission coefficients are used to extract complex permittivity

values [7].

is also used for reflection-only measurements. A pair of antennas is used in [8] in conjunction

with a rotating sample to determine the Brewster angle, the incident angle at which reflection

is zero or minimal, which is a simple function of the sample permittivity for low-loss samples.

One type of antenna that can perform reflection measurements (only one measurement port

is needed) for samples placed in its near-field is a patch antenna. The patch antenna has both

resonator cavity and microstrip properties that set it apart from the other methods described

above. The measurement premise is similar to that for cavity measurements, where resonant

frequency and Q-factor are the two parameters used to characterize low-conductivity media.

This is the measurement method chosen in this work and is described in detail in Chapters 2

and 3.

1.2.2 Capacitive sensing

Where radio frequencies are not a necessary testing band, or are prohibitively expensive for

the application at hand due to the high cost of RF testing equipment, capacitive sensing offers
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the dual benefits of relatively low cost equipment and a linear relationship between relative

permittivity of a sample and the measured capacitance. The basic measurement operation of

a capacitive sensor is shown in Figure 1.5, where a voltage source V provides an alternating

voltage differential between the source electrode and the receiver electrode [9]. An ammeter

measures the responding current I flowing through the circuit. A time-harmonic phase differ-

ence angle φ is observed between the voltage and current, and an impedance is calculated as

Z =
|V |
|I|

(cosφ+ j sinφ) = R+ j(XL −XC), (1.1)

where j is the imaginary unit, XC is the capacitive reactance and XL is the inductive reactance

that is negligible for low-frequency capacitive circuits. The capacitance C is then calculated

from the capacitive reactance as

C =
1

2πfXC
, (1.2)

where f is the operating frequency. The magnitude of the capacitance largely depends on

the electrode surface area, the spacing between the electrodes, and, of particular interest for

materials characterization, the permittivity of the dielectric material between the electrodes.

A parallel plate capacitor produces a largely uniform electric field with field lines parallel to

each other and perpendicular to the electrode surface. A one-sided capacitive sensor generally

has electrodes on the same plane, however, with an electric field that fringes outward and is

most useful in penetrating a dielectric sample, as shown in Figure 1.6. An analytical formula

for capacitance per unit length of the structure shown in Figure 1.6 is given in [10]. The

two-electrode structure is expanded into an array of interdigital electrodes in [11] and [12] to

improve the signal-to-noise ratio and measurable capacitance for flat sample measurements.

For samples of cylindrical geometry, such as insulated wires, a two-electrode, semi-analytical

model was developed in [13] and [14] to calculate the capacitance of the electrodes due to

changes in a solid dielectric cylinder and dielectric cylinder with a conductive core, respec-

tively. This design was improved in [15] with an arrangement of interdigital electrodes around

a dielectric-coated conductive cylinder. The handheld, practical clamp electrode applicator

designed in that work forms the basis for Chapter 5 of this dissertation.



www.manaraa.com

7

Figure 1.5 Schematic representation of a capacitive sensing circuit, with voltage source V

providing an alternating voltage between the Source and Receiver electrodes, and

ammeter I measuring the responding alternating current [9]

Figure 1.6 Cross-section view of a capacitive sensor in contact with a two layer dielectric

sample, showing the fringing electric field penetrating the sample [10]

Planar samples with anisotropic material composition, such as glass-fiber polymer-matrix

composites, are the focus of electrode designs in [16], where the measured capacitance is not

influenced by orientation of the electrodes relative to the anisotropic sample. This simple two-

electrode arrangement is shown in Figure 1.7 with a a honeycomb/glass-fiber sandwich panel,

an example of anisotropic, low-conductivity media. This rotationally independent design was

improved in [17], again increasing the measured sensor capacitance, with the expansion to an

array of interdigital electrodes. This design and its employment to show its capabilities for

material characterization are described in Chapter 4.
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Figure 1.7 Isometric view of a honeycomb/glass-fiber sandwich panel (left) and top view of

a concentric two-electrode capacitive sensor (right) with top view of the panel in

the background [16].

1.3 Thesis structure

The research presented in this dissertation is divided between two sensing approaches that

have the common theme of dielectric characterization of low-conductivity media. Radio fre-

quency sensing is discussed in Chapters 2 and 3, while capacitive sensing is discussed in Chapters

4 and 5.
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CHAPTER 2. PATCH ANTENNA SENSOR MODEL

2.1 Introduction

In many military aerospace applications, it is desired to know the radar cross-section (RCS)

of a particular aircraft. Physical RCS measurements can be obtained in large anechoic chambers

or outdoor test ranges, but this is often impractical and expensive [1]. RCS can be determined

using finite element simulations, but this requires data on the material properties of the outer

layers of the aircraft. Even slight imperfections in the material properties of the outer surfaces

can be detectable and may influence the RCS. If the material properties of the outer surfaces

can be physically characterized with efficient and low-cost methods, the data can be used with

positional information to model RCS, or may simply be used for detection of problem regions.

To minimize radar reflections, many aircraft are not constructed with metallic outer sur-

faces, but rather low-conductivity, or dielectric, multilayer media that may have microwave

absorbing properties, structural properties, or thermal protection properties. Problems in these

layers may be structural (e.g. disbonds, inclusions, and voids) or unexpected radio frequency

(RF) behavior arising from undesirable dielectric properties. Conventional nondestructive eval-

uation techniques, such as tap tests, ultrasonic tests, and X-ray scans are widely accepted for

characterization of structural problems, but they generally fall short of being able to charac-

terize RF responses.

One type of sensor to determine dielectric properties at radio frequencies is a flanged waveg-

uide [2]. This is a simple waveguide with one end terminated in a flange that is pressed into

contact with a sample. The two components of the measured complex reflection coefficient

can then be used to determine the two components of complex permittivity of the sample. If

complex permeability is also to be determined, then a second waveguide is needed [3]. Thus
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one independent reflection measurement yields two material parameters and two measurements

potentially yield four parameters of a single sample layer.

Another approach to determine unknown dielectric properties is to examine the resonating

characteristics of microwave resonators [4]. Specifically, the resonant frequency and quality

factor of a microstrip patch antenna shift when a sample is placed in its near-field. These two

measurable quantities permit the determination of the two components of the sample complex

permittivity [5]. In this chapter, a patch antenna model is examined to characterize theoretical

shifts in resonant frequency and quality factor due to a multilayer dielectric sample placed in its

vicinity. In the following chapter, design parameters are selected such that the sensor operates

in the X-band (8-12 GHz) and measurements are performed to determine the actual resonant

parameters and to determine the unknown permittivity values of a sample layer.

2.2 Patch geometry

The patch sensor is comprised of a conductive patch of width W in the x-direction, length

L in the y-direction, where L ≥ W , and thickness t placed above a groundplane (ideally of

infinite area) with a substrate of height h1 and complex permittivity ε1 placed between the

patch and groundplane, as shown in Figure 2.1. Above the patch may be placed N−1 complex

dielectric layers, each with height hn, with Layer 2 being the first layer above the patch and

layer N being the final layer. If Layer N is a halfspace, then hN → ∞. In this model, all

dielectric layers are assumed to have infinite dimensions in the xy-plane. The patch is fed by

a cylindrical probe of diameter d0 at an offset distance of y0 from the edge of the patch along

the length L.

Because of the finite thickness of the patch conductor, where charge accumulates on the

finite thickness edge of the patch, the sensor performs as though the patch width W (and

length L) appears to be wider than its physical width and should be replaced in all following

equations as W + ∆W [7], where

∆W =


1.25t

π

[
1 + ln

(
4πW

t

)]
,
W

h1
≤ 1

2π
1.25t

π

[
1 + ln

(
2h1
t

)]
,

W

h1
>

1

2π
.

(2.1)
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Figure 2.1 Cross-section view of the patch antenna with its substrate represented by Layer

1 and dielectric samples represented by Layers 2 through N . All layers have a

height hn and complex permittivity εn. The patch is fed by a cylindrical probe of

diameter d0 at distance y0 from the edge of the patch along the length L.

A similar expression also exists for ∆L by replacing W in the above equation with L.

2.3 Patch antenna operation

The patch antenna, being a rectangular or square conductive sheet separated from an in-

finitely large groundplane by an infinitely wide dielectric layer, is simply a truncated microstrip.

Whereas a microstrip is a transmission line designed to guide microwave energy, via travelling

electromagnetic waves, from one location to another, the finite length of the patch antenna re-

sults in a standing electromagnetic wave that forms in the substrate region between the patch

and groundplane. The inverse of the natural wavelength of the standing wave is proportional

to the resonant frequency of the patch. Besides the length of the patch, the width, substrate
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parameters, and the parameters of the layers exterior to the patch all have an influence on its

inherent resonant frequency, which will be discussed further on.

Because the patch is a truncated piece of microstrip transmission line, the patch has some

transmission line properties that affect its performance. However, the behavior of the standing

waves that form in the rectangular prism region formed beneath the patch mimics properties

of a rectangular microwave cavity. Both properties are utilized in this work to calculate the

resonant frequency of the patch.

2.3.1 Resonant cavity properties

One aspect of patch antenna operation is that a patch antenna behaves in a similar fashion

to a rectangular microwave cavity. A microwave cavity, in general, is any type of structure that

confines electromagnetic fields to the volume interior to the cavity, which causes standing waves

to form at specific resonant frequencies that depend upon the containment structure geometry

and material properties. One type of ideal containment structure that behaves as a resonator

is a hollow, rectangular box with all six walls comprised of perfect electrical conductor (PEC).

In the case of the patch antennna, the containment structure may be idealized as two PEC

walls (the patch and the groundplane) and four perfect magnetic conductor (PMC) walls with

a dielectric material filling the space inside the box (and does not extend outside the box).

PEC (PMC) boundary conditions in electromagnetic theory are characterized by vanishing

tangential electric (magnetic) field at the boundary. The difference in behavior of these two

structures is simply the boundary conditions.

To solve for the time-harmonic electromagnetic wave solution in any source-free and lossless

region, Maxwell’s equations describing the electric and magnetic fields for such a region must

first be defined, and are given as

∇ ·D = 0 Gauss’s law (2.2)

∇×E = −jωB Faraday’s law of induction (2.3)

∇ ·B = 0 Gauss’s law for magnetism (2.4)

∇×H = jωD Ampère’s circuital law (2.5)
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where E is the electric field intensity, D = εE is the electric flux density, H is the magnetic

field intensity, B = µH is the magnetic flux density, ε is the electric permittivity, µ is the

magnetic permeability, ω is the angular frequency, and j =
√
−1 is the imaginary unit. Before

proceeding, it is beneficial to recognize that, due to the region being source-free, both D and

B lack divergence and, therefore, each can be represented as the curl of another vector field.

These are given as

DF = −∇× F (2.6)

BA = ∇×A, (2.7)

where F is the electric vector potential and A is the magnetic vector potential, which are

both circulating fields, and the subscripts F and A indicate the fields due to the respective

vector potentials. The total electric and magnetic field intensities are derived from the vector

potentials in [6] as

E = −jωA− j 1

ωµε
∇(∇ ·A)− 1

ε
∇× F (2.8)

H = −jωF− j 1

ωµε
∇(∇ · F) +

1

µ
∇×A. (2.9)

It is apparent from these relations that E and H are each dependent upon both F and A.

However, some simplification can be performed depending on the operating mode of the cavity.

A variety of electromagnetic field configurations may exist that satisfy both Maxwell’s

equations and the given boundary conditions, but the most common configurations (or modes)

have certain field components transverse to the direction of wave propagation. These are

transverse electric (TE), transverse magnetic (TM) and transverse electromagnetic (TEM). In

the case of a cavity, which has no direction of propagation, a surface normal direction must

be chosen to reference the transverse components; here, the z-direction is chosen as it is the

direction normal to a physical patch antenna sensor. For a patch-style resonant cavity with

the z-direction normal to the patch surface, the dominant mode (or the mode supporting the

lowest possible resonant frequency) is the TMz mode, which requires that Hz = 0. To achieve

Hz = 0, only Az must be nonzero, which, when plugged into (2.8) and (2.9) yields the electric
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and magnetic field intensity components [17]:

Ex = −j 1

ωµε

∂2Az
∂x∂z

Hx =
1

µ

∂Az
∂y

Ey = −j 1

ωµε

∂2Az
∂y∂z

Hy = − 1

µ

∂Az
∂x

(2.10)

Ez = −j 1

ωµε

(
∂2

∂z2
+ k

)
Az Hz = 0

The Helmholtz wave equation is then simplified and given as

∇2Az + k2Az = 0, (2.11)

where k is the operating wavenumber and is subject to the constraint condition

k2 = k2x + k2y + k2z = ω2µε. (2.12)

Equation (2.11) is solved in [6] for a rectangular cavity using a separation of variables method

to yield:

Az = [B1 cos(kxx) + C1 sin(kxx)] [B2 cos(kyy) + C2 sin(kyy)] [B3 cos(kzz) + C3 sin(kzz)] .

(2.13)

The coefficients B and C are found by enforcing two PEC boundary conditions (the top and

bottom electrical conductors) and four PMC boundary conditions (the four dielectric sides of

the box). The six boundary conditions are given in [17] as:

Ex

∣∣∣∣
z=0

= Ex

∣∣∣∣
z=h1

= 0 (2.14)

Hx

∣∣∣∣
y=0

= Hx

∣∣∣∣
y=L

= 0 (2.15)

Hy

∣∣∣∣
x=0

= Hy

∣∣∣∣
x=W

= 0. (2.16)

The application of the above boundary conditions finds that C1 = C2 = C3 = 0, simplifying

Az to

Az = Amnp cos(kxx) cos(kyy) cos(kzz), (2.17)
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Figure 2.2 Rectangular cavity modal electric field pattern between the patch and the ground-

plane for dominant transverse-magnetic modes with no magnetic field in the

z-direction (TMz). Assuming L > W > h1, TMz
010, (a), is the dominant mode.

If L > W > L/2 > h1, TMz
100, (b), is the next higher-order mode, otherwise if

L > L/2 > W > h1, TMz
020, (c), will follow the dominant mode. However, if

L > W/2 > L/2 > h1, then TMz
200, (d), will follow the dominant mode.

where

kx =
mπ

W
, m ∈ N (2.18)

ky =
nπ

L
, n ∈ N (2.19)

kz =
pπ

h1
, p ∈ N. (2.20)

Using the constraint equation in (2.12), the resonant frequency for this cavity structure is found

to be

fr,mnp =
1

2π
√
µε

√(mπ
W

)2
+
(nπ
L

)2
+

(
pπ

h1

)2

, (2.21)

where, in this case, ε = εr1ε0 and m = n = p 6= 0.
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2.3.2 Microstrip properties

Whereas a microwave cavity is designed to resonate at specific frequencies by the formation

of standing waves, a patch antenna also behaves similarly to a microstrip line, which is designed

to guide traveling electromagnetic waves between components and devices. This is due to the

fact that the patch antenna does not actually have perfect boundary conditions on the four side

walls formed in the substrate beneath the patch (treated as PMC boundaries in the section

above). In reality, the electric field extends into the air (or sample, as in this work) before

returning through the substrate and terminating on the groundplane some distance away from

the region covered by the patch. This has the effect of modifying the apparent dimensions

of the patch when computing its resonant properties. It is also this “fringing” field that is

responsible for the radiation of energy from the patch antenna, when the fields are alternating

with time.

A microstrip is simply a piece of transmission line, with an infinitely long conductor line

of width W placed above a groundplane of infinite area and separated from the groundplane

by a substrate of height h and relative permittivity εr. As with any transmission line, the

main parameter of interest is the characteristic impedance, which is a ratio of the voltage and

current amplitudes of an electromagnetic wave that is travelling down the line. A schematic

representation of a section of general transmission line is shown in Figure 2.3, where R is the per

unit length resistance of the conductors, L is the per unit length inductance of the conductors,

G is the per unit length conductance of the substrate, and C is the per unit length capacitance

of the line. Using a pair of differential equations known as the telegrapher’s equations, the

voltage and current functions are solved for, and their ratio is the characteristic impedance

[18], given in time-harmonic form as

Z0 =

√
R+ jωL

G+ jωC
. (2.22)

If the line is lossless, then R = 0 and G = 0, so Z0 =
√
L/C. Therefore, the line inductance and

capacitance must be determined to compute the characteristic impedance of any transmission

line.
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Figure 2.3 Schematic representation of a general transmission line, where R is the conductor

resistance per unit length, L is the conductor inductance per unit length, G is the

dielectric conductance per unit length, and C is the dielectric capacitance per unit

length.

The primary mode of operation of a microstrip is ideally a TEM mode (electric and magnetic

field are both transverse to the direction of propagation), but since they actually exist in

both the air and substrate, the microstrip can truly only operate as quasi-TEM. For a TEM

approximation, the strip can be assumed to be surrounded entirely by an effective dielectric

material that has a permittivity value between that of air and the substrate. One popular

method of computing this effective permittivity and directly approximating the characteristic

impedance of a microstrip was first formulated by Wheeler [11], where a conformal mapping

approach was used to determine the effective filling fraction of the substrate, which is used to

determine the weight of contribution of the substrate permittivity to the effective permittivity.

Using a simplified version of Wheeler’s original expressions, the low-frequency characteristic

impedance of a microstrip is approximated as follows [6]:

Z0 =


60√
εr,eff

ln
(
8h
W + W

4h

)
, W

h ≤ 1

120π√
εr,eff

[
W
h + 1.393 + 0.667 ln

(
W
h + 1.444

)]−1
, W

h > 1
(2.23)

where

εr,eff =


εr+1
2 + εr−1

2

[(
1 + 12 h

W

)−1/2
+ 0.04

(
1− W

h

)2]
, W

h ≤ 1

εr+1
2 + εr−1

2

(
1 + 12 h

W

)−1/2 W
h > 1.

(2.24)
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2.4 Resonant frequency model

In this work, the resonant frequency of a patch antenna is modeled using the Modified Wolff

Model, which is based upon the computation of the total patch capacitance using a variational

method [8]. The region beneath the patch, in the substrate between the patch and groundplane,

is assumed to form a cavity where the dominant wave mode is the transverse magnetic, or TMz

(i.e. no magnetic field in the z-direction, the direction of propagation). The resonant frequency

of the mn-th mode is defined as

fmn = <
[

c

2π
√
εr,dyn

kmn

]
, (2.25)

where c is the speed of light, kmn is the mn-th wavenumber, εr,dyn is the complex relative

dynamic permittivity (εr,dyn = ε′r,dyn − jε′′r,dyn), m is the mode number along the patch width

W , and n is the mode number along the patch length L. The mn-th wavenumber is defined as

kmn =

√(
mπ

Weff

)2

+

(
nπ

Leff

)2

(2.26)

where Weff and Leff are the effective width and length of the patch, respectively, due to

fringing and will be defined further on.

In this model there are assumed to be N dielectric layers, each with complex permittivity

εrk and height hk, with index k = 1 indicating the patch substrate and k = N indicating the

final halfspace layer with hN →∞. It should be noted here that because complex permittivity

values are permissible inputs to the system, all capacitances C, admittances Y , and impedances

Z will be assumed to be complex, and the traditional complex asterisk notation (*), in order to

eliminate redundancy and improve equation clarity, will be dropped. Where necessary, the real

part of a complex variable will be designated with <() or primed notation, and the imaginary

part will be designated with =() or double primed notation. The complex dynamic permittivity

of the patch, including all N layers, is defined as

εr,dyn =
Cdyn(εr1...εrN )

Cdyn(εr1...εrN = 1)
, (2.27)

where Cdyn(εr1...εrN ) is the total dynamic capacitance with all dielectric layers included and

Cdyn(εr1...εrN = 1) is the total dynamic capacitance with all layers replaced with air.
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Two references will now be defined for continued use in this section: static and dynamic.

The term static here refers to operation of the patch antenna sensor at zero frequency—that

is the electric field in the substrate is uniform. Dynamic refers to the electric field variation

caused by the operation of the patch at a certain frequency. Thus a capacitance measurement

will have different results in the static and dynamic regimes due to the variation in electric field

distributions. The total dynamic capacitance is defined as

Cdyn(εr1...εrN ) = C0,dyn(εr1) + 2CW,dyn(εr1...εrN ) + 2CL,dyn(εr1...εrN ), (2.28)

where C0,dyn(εr1) is the central dynamic capacitance of the patch due to the substrate only, and

CW,dyn(εr1...εrN ) and CL,dyn(εr1...εrN ) are the dynamic fringing capacitances along both edges

of width W and length L, respectively, due to all layer permittivities. The central dynamic

capacitance is obtained from

C0,dyn(εr1) =
C0,stat(εr1)

γmγn
, (2.29)

where

C0,stat(εr1) = ε0εr1
WL

h1
(2.30)

γi =

 1 i = 0

2 i 6= 0 i = m,n.
(2.31)

The dynamic fringing capacitances are obtained by

CW,dyn(εr1...εrN ) =
CW,stat(εr1...εrN )

γm
(2.32)

and

CL,dyn(εr1...εrN ) =
CL,stat(εr1...εrN )

γn
(2.33)

The static fringe capacitances are then found by subtracting the central static capacitance from

the total static capacitance:

CW,stat(εr1...εrN ) =
1

2
[CW (εr1...εrN )L− C0,stat(εr1)] (2.34)

CL,stat(εr1...εrN ) =
1

2
[CL(εr1...εrN )W − C0,stat(εr1)] (2.35)
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where CW and CL are the total static capacitances per unit length for microstrips of width W

and L, respectively. It should be mentioned here that, from this point onward, only equations

related to the patch width W will be given for brevity since all equations involving W and L

are of the same form.

The total static capacitance per unit length is computed via a variational method developed

in [9] where a charge density distribution fW (x) across the surface of the width dimension of

the patch is assumed. A variety of distributions can be assumed, but the two distributions

investigated by Yamashita are a first-order and a third-order approximation. The first-order

approximation assumes a distribution of the form

fW (x) =

 |x| −W
2 ≤ x ≤

W
2

0 otherwise.
(2.36)

Using the Fourier transform1 of fW (x)

f̃W (β) =

∫ ∞
−∞

fW (x)ejβxdx, (2.37)

the transform has the form

f̃W (β)

Q
= 2 sinc

(
βW

2

)
− sinc2

(
βW

4

)
, (2.38)

where Q is the total charge per unit length. The third-order charge distribution is approximated

as

fW (x) =

 1 +A
∣∣ 2x
W

∣∣3 −W
2 ≤ x ≤

W
2

0 otherwise.
(2.39)

If A = 1, the Fourier transform has the form

f̃W (β)

Q
=

8

5
sinc

(
βW

2

)
+

12

5

(
βW

2

)−2 [
cos

(
βW

2

)
− 2 sinc

(
βW

2

)
+ sinc2

(
βW

4

)]
.

(2.40)

From Figure 2.4(b), it may be seen that the Fourier transform of the third-order distribution

function converges slightly faster than that of the first-order. This choice will speed up com-

putation, but if that is not a concern, either distribution will give very similar results when

integrated. The third-order function will be used here in all further computations.

1Traditional Fourier transform is defined with −jβx while Yamashita uses +jβx
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(a) (b)

Figure 2.4 Plots of the calculated analytical (a) charge distribution test functions and (b) the

Fourier spectrum of the distributions. In this plot, W = 10 mm.

The total static capacitance per unit length is then computed as

1

CW
=

1

πε0

∫ ∞
0

(
f̃W (β)

Q

)2
1

βY (β)
dβ (2.41)

where Y (β) is the normalized admittance function, which is very important in this research as

it contains the height and complex permittivity information for every layer. The normalized

admittance function is calculated as the sum of the normalized admittance contributed by

both the substrate and the material above the patch, the kth layer of which is calculated in an

iterative procedure given by

Yk(β) =


εr1 coth(βh1), k = 1

εrk
Yk+1(β) + εrk tanh(βhk)

εrk + Yk+1(β) tanh(βhk)
, k = 2, 3, ..., N − 1

εrN , k = N

(2.42)

The total normalized admittance is then computed as Y (β) = Y1(β)+Y2(β). Thus, in a simple

case where a single dielectric layer is above the patch followed by a halfspace media, the total

normalized admittance is given as

Y (β) = εr1 coth(βh1) + εr2

[
εr3 + εr2 tanh(βh2)

εr2 + εr3 tanh(βh2)

]
. (2.43)



www.manaraa.com

25

ℎ1

ℎ2

𝜀𝑟1

𝜀𝑟2 tan 𝛿2

tan 𝛿1

Air

ℎ1

ℎ2

𝜀𝑟1

𝜀𝑟2 tan 𝛿2

tan 𝛿1

Type I

Type II

Figure 2.5 Two fundamental layer arrangements above a patch antenna. Type I shows a

single dielectric layer above the patch with an open air background. Type II shows

a single dielectric layer backed by a PEC groundplane.

If layer N has a finite thickness and is bounded by a PEC plane, YN (β) in (2.42) can be replaced

with YN (β) = εrN coth(βhN ). Two fundamental cases are shown in Figure 2.5.

The effective width Weff and length Leff in (2.26) represent the apparent patch dimensions

due to both fringing fields and the inhomogeneity in the dielectric materials surrounding the

patch. The effective length is defined as

Leff = L+
Weq −W

2

εr,eff (W ) + 0.3

εr,eff (W )− 0.258
, (2.44)

where Weq is the equivalent width of the patch due solely to the influence of fringing electric

fields [10] and is defined as

Weq =
η0h1

Z ′W

√
ε′r,eff (W )

. (2.45)

The static effective relative permittivity εr,eff (W ) represents a homogeneous dielectric medium

surrounding the patch and is defined as the ratio of the static capacitance in (2.41) with the
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substrate and dielectric layers to that with only air, and includes a patch conductor thickness

t correction [8], such that

εr,eff (W ) =
CW
C0,W

− εr,eq − 1

4.6

t/h1√
W/h1

, (2.46)

where εr,eq is the equivalent relative permittivity of the homogeneous effective medium col-

lapsed into a single dielectric layer bounded by air. The thickness correction is due to charge

accumulation on the finite thickness edge leading to more electric field lines originating from

this edge than in the ideal zero-thickness case, thus the patch appears wider and alters the ap-

parent effective permittivity, which must be corrected. The equivalent permittivity is generally

a complex value where the real and imaginary parts are defined as

ε′r,eq(W ) =
< [CW /C0,W ]− 1

q
+ 1 (2.47)

ε′′r,eq(W ) =
= [CW /C0,W ]

q
, (2.48)

where q is the filling fraction of the substrate representing how much field energy is contained

between the patch and groundplane, defined as

q =
1

2
(p+ 1) (2.49)

and

p =


(

1 + 12h1W

)−1/2
, W/h1 > 1(

1 + 12h1W

)−1/2
+ 0.04

(
1− W

h1

)2
, W/h1 ≤ 1

(2.50)

When W/h1 is very large, q approaches a value of 1, meaning all electrical energy is confined

to the substrate region. Conversely, when W/h1 is very small, q approaches a value of 0.5,

meaning the electric field energy is equally split between the substrate and air.

The characteristic impedance ZW in (2.45) is the voltage-to-current amplitude ratio of an

electromagnetic wave propagating down a microstrip. A variety of closed-form expressions,

such as those given by Wheeler [11] and Hammerstad-Jensen [12], exist for rapid and accurate

computation of the characteristic impedance. However, the characteristic impedance may be

calculated using the static line capacitance in (2.41) [8], such that

ZW =
1

cC0,W

√
εr,eff (W )

. (2.51)
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2.5 Q-factor model

One figure-of-merit when describing an electrical circuit is the ratio between resistive and

reactive components. When describing a resonator, this ratio, the quality factor (Q-factor),

indicates how well-damped the oscillations are per cycle. A higher Q-factor (> 0.5) indicates

underdamping, or lower energy lost to the circuit per cycle, while lower Q-factor (< 0.5)

indicates overdamping and lack of oscillations.

The ratio definition of Q-factor depends upon whether the circuit is structured as a series or

parallel circuit, since both circuits behave as the inverse of the other. For example, a series RLC

resonator (an inductance L, a capacitance C, and resistance R in series) will have a minimum

impedance at the resonant frequency as both reactive components have resonated each other

out to form a short circuit, leaving only the R component. A parallel RLC resonator will

achieve a maximum impedance at resonance as both reactive components have resonated each

other out to form an open circuit. Thus the theoretical circuit Q-factor for both orientations

is defined using circuit elements as:

Q =


ω0L
R = 1

ω0RC
, series

R
ω0L

= ω0RC, parallel
(2.52)

Equivalent circuit components for a patch antenna sensor form a parallel RLC circuit, which

means that the measured input resistance achieves a maximum and the input reactance equals

zero at resonance.

As the Q-factor is a ratio of resistive and reactive impedances, there are a variety of material

and geometrical contributions that affect its value. For a patch antenna, there are four main

contributions which are derived from the losses in the patch circuit:

• Conductor loss Q-factor (Qc)—The conductors comprising the patch and groundplane

cause energy loss to the circuit that depend upon the frequency, conductivity, and effective

permittivity of the patch.

• Dielectric loss Q-factor (Qd)—The dielectric layers comprising the substrate and sample

are, in general, complex and the imaginary component of the effective permittivity acts

to decrease Qd.
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• Radiation loss Q-factor (Qr)—The patch is an antenna designed to radiate energy from

the circuit, which manifests as a loss to the circuit. This is generally the largest contrib-

utor to the total Q-factor of the patch.

• Surface wave loss Q-factor (Qsw)—The patch antenna excites some surface waves at the

interface between the substrate and air and are viewed as a loss by the system.

Each Q-factor loss contribution coexists in parallel with the other, leading to a total Q-factor

Qt defined as:

1

Qt
=

1

Qc
+

1

Qd
+

1

Qr
+

1

Qsw
(2.53)

In this work, Qd contains the information about the complex permittivity of a test sample

in close proximity to the patch antenna sensor and, as such, is of primary focus in relation

to determining imaginary permittivity of a test sample. First, however, the forward Q-factor

model will be presented by detailing the components of each loss contribution.

2.5.1 Conductor loss Q-factor Qc

The Q-factor of the patch antenna due to conductor losses in the patch and groundplane

may be expressed as

Qc =
πfr
√
ε′r,av

cαc
, (2.54)

where αc is the loss coefficient due to the conductors and ε′r,av is the real part of the average

static effective permittivity of the patch [13], defined

εr,av =
1

2
[εr,eff (W ) + εr,eff (L)] . (2.55)

The terms εr,eff () appearing in (2.55) are given by (2.46). The loss coefficient in dB per unit

length is given as

αc =
8.686πfr

√
ε′r,av

c

∆Z

Z0
, (2.56)

where Z0 is the average characteristic impedance of an air-filled patch, given by Z0 = 2
c(C0,W+C0,L)

,

and ∆Z is the fractional change in characteristic impedance due to the operating skin depth

δs corrections to the patch width, height, and thickness [14]:

∆Z = Z0(δs)− Z0. (2.57)
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These corrections amount to replacing W (or L), h1 and t in (2.41) with W − δs, h1 + δs and

t−δs, respectively. The skin depth δs is the depth into a lossy medium at which the propagating

electric field amplitude (or induced current density amplitude) has decayed to 1/e (or about

37 %) of its incident value. The depth is defined in non-permeable materials as

δs =
1√

πfrµ0σ
, (2.58)

where σ is the conductivity of the patch conductors.

Inserting (2.56), converted to nepers per unit length by the relation 1 Np = 8.686 dB, into

(2.54), the expression for Qc simplifies to

Qc =
Z0

∆Z
. (2.59)

An example calculation for Qc is plotted in Figure 2.6 with varying substrate height and

conductor thickness. From this figure, it is apparent that conductor loss (inverse ofQc) increases

with thinner conductors and becomes less pronounced with thinner substrates. This can be

explained physically by the simple fact that conductors with smaller cross-sectional area exhibit

more resistance to current flow, so the loss increases. Also, when the resonant frequency

increases, the skin depth decreases, which increases the effective patch width and decreases the

effective substrate height. This dual action increases the patch capacitance, which decreases

the characteristic impedance change ∆Z. Although the loss coefficient αc is proportional to

resonant frequency as in (2.56), this frequency dependence is canceled out in the equation for

Qc, leaving only the ∆Z dependence on frequency. Therefore, Qc increases with increasing

resonant frequency.

If a sample layer is backed by a metal backplane, then one more correction that needs to be

made in (2.57) for ∆Z is to increase the sample height layer, or layers, by δs to take account

of the skin depth in the sample backplane [14].

2.5.2 Dielectric loss Q-factor Qd

The Q-factor of the patch antenna due to dielectric losses in the substrate and sample layers

is defined as

Qd =
πfr
√
ε′r,eff

cαd
, (2.60)
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Figure 2.6 Calculated conductor loss Q-factor Qc as a function of changes in substrate height

h1 and patch thickness t using (2.59). The thicknesses given are those most com-

monly used in PCB manufacturing and are more often written, from smallest to

largest, in ounces of copper (per square foot): 0.5 oz, 1 oz, 2 oz and 3 oz. The

patch parameters used here are: W = L = 10 mm, h1 = 1 mm, and σ = 58 MS/m.

where αd is the dielectric loss coefficient, given in dB per unit length as [16]

αd =
8.686πfr

√
ε′r,eff

c

ε′r,eq(ε
′
r,eff − 1)

ε′r,eff (ε′r,eq − 1)
tan δeq, (2.61)

where ε′r,eq is the equivalent real permittivity of a single layer between the patch and ground-

plane in air and tan δeq is the equivalent loss tangent (or dissipation factor) of the single layer.

An example of the loss coefficient behavior is plotted in Figure 2.7. The equivalent loss tangent

of the single layer is defined as

tan δeq =
ε′′r,eq
ε′r,eq

=
ε′′r,eff

ε′r,eff + q − 1
. (2.62)

When (2.47), (2.48) and (2.62) are substituted into (2.60), the quality factor due to dielectric

loss reduces to

Qd =
1

tan δeff
, (2.63)

where tan δeff = ε′′r,eff/ε
′
r,eff . Thus, for increasing lossiness of substrate or sample layers, the

effective loss tangent increases and the dielectric Q-factor decreases. When Qd decreases to
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Figure 2.7 Calculated dielectric loss coefficient αd as a function of changes in Layer 2 height

hs and loss tangent tan δ2 using (2.61). The patch parameters used here are:

W = L = 10 mm, h1 = 1 mm, εr1 = 2, tan δ1 = 0.001, and t = 35.56 µm.

an order of magnitude approaching that of the dominant radiation loss Qr, it will begin to

dominate the loss contributions and significantly reduce the total Q-factor. It is also obvious

from (2.63) that Qd is independent of frequency, if dispersion is negligible in both the patch

substrate and sample superstrate(s).

An example plot of Qd as a function of sample layer height and loss tangent is given in

Figure 2.8. From this figure, it may be seen that as the sample loss tangent increases by orders

of magnitude, for very thick layers Qd drops significantly under circumstances in which the loss

tangent of the sample superstrate is higher than that of the patch substrate. This is not very

noticeable for thin layers, but Qd changes rapidly with layers on the same order of thickness

as the substrate before approaching limiting values at approximately ten times the substrate

thickness.

2.5.3 Radiation loss Q-factor Qr

Since the primary purpose of an antenna is to radiate energy away from the transmitting

system, the radiated proportion of the total energy should be expected to be quite high rel-
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Figure 2.8 Calculated dielectric loss Q-factor Qd due to changes in substrate height h1 and

Layer 2 loss tangent tan δ2 using (2.63). The patch parameters used here are:

W = L = 10 mm, h1 = 1 mm, εr1 = 2, tan δ1 = 0.001, and t = 35.56 µm.

ative to the other mechanisms discussed above. Although the patch antenna is modeled as a

cavity, where there are no radiation losses and only a purely imaginary input impedance, the

true radiation loss effect can be modeled as a shunt conductance Gr between the patch and

groundplane, defined as

Gr =
I(X)

πη0
, (2.64)

where

I(X) =

∫ π

0
F (X, θ) sin2 θdθ =

∫ π

0

[
sin
(
X
2 cos θ

)
cos θ

]2
sin3 θdθ, (2.65)

F (X, θ) is the far-field pattern of the electric field (Eφ-component), and X = 2πfWeq/c. Essen-

tially, the rectangular region bounded by the width-side edge of the patch and the groundplane

is assumed to be a radiating aperture, or slot, of width Weq in the midst of a groundplane,

where the aperture is assumed to have a uniform electric field distribution per unit length [15].

According to [17], (2.65) has closed-form solution:

I(X) = cosX +X Si(X) + sincX − 2, (2.66)
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where Si(X) is the sine integral,

Si(X) =

∫ X

0

sin t

t
dt =

∫ X

0
sinc tdt. (2.67)

However, numerical computation of the sine integral in programs such as MATLAB may be

slow, so [19] provides an approximation for Gr that is much faster:

Gr =


W 2

eq

90λ20
, Weq < 0.35λ0

Weq

120λ0
− 1

60π2 , 0.35λ0 ≤Weq < 2λ0

Weq

120λ0
Weq ≥ 2λ0,

(2.68)

where λ0 is the free-space resonant wavelength, λ0 = c/fr. Computation speed of the sine

integral may also be improved by using a series expansion, such that

Si(X) =
∞∑
n=0

(−1)n
X2n+1

(2n+ 1)(2n+ 1)!
, (2.69)

where the finite number of summation terms required for an accurate approximation depends

upon the size of X [20].

The Q-factor due to radiation loss is then defined as

Qr =
π

4GrZW
, (2.70)

where ZW is the characteristic impedance of the patch antenna sensor from the width side,

given in (2.51). From this relationship, it may be seen that a number of contributing factors

will increase Qr (i.e. reduce radiation losses): decreasing W , decreasing h1, increasing εr,eff ,

and decreasing resonant frequency fr. If metal backs a sample layer, then ZW will decrease,

which increases Qr. This makes intuitive sense as a conductor positioned in the vicinity of the

patch antenna sensor acts to reduce its radiating capability.

Figure 2.9 plots the radiation losses as a function of sample permittivity and height. For

very small sample layers, the Q-factor approaches the value for that in air, but as the height

increases, the radiation decreases. The same effect occurs with increasing permittivity. This is

due to the strong contrast with air, the latter being more conducive to radiation.
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Figure 2.9 Calculated radiation loss Q-factor Qr due to changes in Layer 2 height and per-

mittivity using (2.70). The patch parameters used here are: W = L = 10 mm,

h1 = 1 mm, εr1 = 2, tan δ1 = 0.001, and t = 35.56 µm.

2.5.4 Surface wave loss Q-factor Qsw

Since the patch is located at the interface between two different dielectric media, it excites

electromagnetic surface waves that propagate along the substrate-air or substrate-sample in-

terface. The surface waves do not radiate out into free space and, therefore, detract from the

intended efficiency of the antenna. This means that surface waves are a loss mechanism that

are separate from, but related to, the total radiated power. According to [21], it is important

to compute this loss because it “constitutes a significant loss (generally a greater loss than

either dielectric or conductor loss)” and its power can “diffract from substrate edges or other

discontinuities to degrade sidelobe levels or polarisation purity.”

The Q-factor of the patch antenna sensor due to surface-wave loss is given in [19] as

Qsw = Qr
Psp
Psw

, (2.71)

where Psp is the power radiated into the space beyond the substrate and patch and Psw is the

power radiated as surface waves along the substrate interface. The space-wave power is defined
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in [21] as

Psp = −<
[∫

S
ExxJxdS

]
(2.72)

' η0k
2
0(k0h1)

2

3π

[
1− 1

ε′r,eq(W )
+

2

5ε′2r,eq(W )

]
,

where Jx is an x-directed infinitesimal current source, located at (0, 0, h1), Exx is the resulting

electric field located on the substrate surface at (x, y, h1), and k0 = 2π/λ0 is the resonant

wavenumber in air.

The surface-wave power is similarly calculated as

Psp = −<
[∫

S
Res(Exx)JxdS

]
(2.73)

=
η0k

2
0

4

ε′r,eq(W )(x2p − 1)

ε′r,eq(W )

[
1√
x2p−1

+

√
x2p−1

ε′r,eq(W )−x2p

]
+
[
1 +

ε′2r,eq(W )(x2p−1)
ε′r,eq(W )−x2p

]
(k0h1)

,

where Res(Exx) is the residue of the electric field at a pole created by a TM-component of the

Green’s function in [21], and xp is the normalized root of the propagation constant causing the

pole [22], given by

xp = 1 +
−ε′2r,eq(W ) + α0α1 + ε′r,eq(W )

√
ε′2r,eq(W )− 2α0α1 + α2

0

ε′2r,eq(W )− α2
1

(2.74)

α0 = s tan(k0h1s) (2.75)

α1 = −1

s

[
tan(k0h1s) +

k0h1s

cos2(k0h1s)

]
(2.76)

s =
√
ε′r,eq(W )− 1, (2.77)

which is an exact solution for all possible values of the equivalent permittivity. For lower

permittivity values (approximately εr < 10), a simpler approximation for the surface-wave
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Figure 2.10 Calculated surface-wave loss Q-factor Qsw due to changes in substrate height and

permittivity using (2.71). The patch parameters used here are: W = L = 10 mm,

h1 = 1 mm, εr1 = 2, tan δ1 = 0.001, and t = 35.56 µm.

power is given in [21] as

Psw '
η0k

2
0

4

[ε′r,eq(W )− 1]3(k0h1)
3

ε′3r,eq(W )
. (2.78)

Figure 2.10 plots the surface wave loss as a function of sample layer height and permittivity.

The behavior essentially matches that of Qr but is a fraction of its loss. Compared to Qc and

Qd shown in the previous subsections, Qsw is much more significant and is the second-most

significant loss behind Qr, but this is only true for the specific examples given. Factors that

will increase Qsw (decrease surface wave loss) are: increased Qr, decreased substrate height h1,

decreased resonant frequency, and decreased substrate or sample permittivity.

2.5.5 Total losses Q-factor Qt

As shown in 2.53, the total Q-factor is a parallel combination of the four main loss contri-

butions. The radiation loss will usually dominate, followed by surface wave loss, conductor loss

and dielectric loss, the order of which depends upon the patch and sample geometry and dielec-

tric materials. The total loss Q-factor Qt will always be lower than than Qr due to the parallel

effect of the other losses. For example, if Qr = 20, Qsw = 400, Qc = 1000 and Qd = 2000, then
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Figure 2.11 Calculated contributions to the total Q-factor Qt as a function of sample layer

height h2. The parameters used in this example are: W = L = 10 mm,

h1 = 1 mm, εr1 = εr2 = 2, tan δ1 = tan δ2 = 0.001, and t = 35.56 µm.

Qt = 18.5, just slightly less than Qr. Generally, Qt lies between 0.5 and Qr for a resonating

patch antenna sensor.

Figures 2.11, 2.12 and 2.13 show the loss component contributions to the total Q-factor as

a function of sample layer height, permittivity and loss tangent, respectively, for one example

set of geometrical and dielectric parameters. In Figure 2.11, there is very little variation in Qt

as a function of the thickness of Layer 2, mainly due to the low contrast between the substrate

and the sample permittivity. In Figure 2.12, there is a noticeable increase in Qt with increasing

sample permittivity, but the effect is not very strong due to the small sample thickness. In

Figure 2.13, the most interesting observation is that as loss tangent increases toward unity, Qd

competes with Qr for dominance, and therefore Qt becomes heavily influenced by Qd. Another

observation is the additional inflections of Qc, Qr and Qsw as the loss tangent approaches

unit—this is due to the now-significant influence of the imaginary permittivity on the resonant

frequency, as given in 2.25.
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Figure 2.12 Calculated contributions to the total Q-factor Qt as a function of sample layer per-

mittivity εr2. The patch parameters used in this example are: W = L = 10 mm,

h1 = 1 mm, εr1 = 2, tan δ1 = tan δ2 = 0.001, and t = 35.56 µm.

2.6 Conclusion

In this chapter a detailed model from literature for calculating the resonant frequency and

Q-factor of a patch antenna sensor as a function of the parameters of one or more sample layers

was presented. The loss contributions to the total Q-factor were analyzed and examples were

given to aid understanding of the various loss mechanisms. In the next chapter, the model

described here will be used to design a physical patch antenna sensor for X-band operation and

nondestructive evaluation of actual low-conductivity samples.
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Figure 2.13 Calculated contributions to the total Q-factor Qt as a function of sample layer loss

tangent tan δ2. The patch parameters used in this example are: W = L = 10 mm,

h1 = 1 mm, εr1 = εr2 = 2, tan δ1 = 0.001, and t = 35.56 µm.
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CHAPTER 3. PATCH ANTENNA SENSOR DESIGN AND

LABORATORY MEASUREMENTS

3.1 Introduction

In the previous chapter, a model was presented that takes the parameters of a patch antenna

sensor and sample parameters, including complex permittivity, as inputs and computes the

expected resonant frequency. Some example calculations were plotted for generic patch designs

and the expected results were discussed. In this chapter, a physical patch antenna sensor is

designed based upon specified criteria, signal feeding issues are discussed, an unconventional

method of measuring the resonant frequency is discussed and developed, a physical antenna

is realized and tested with a variety of well-characterized microwave materials to validate the

model and design, and future work is proposed, including a potential permittivity inversion

scheme.

3.2 Patch design parameters

The physical patch design presented in this chapter was the guided by two main criteria.

Simulations employing the model presented in Chapter 2 and finite element simulations using

Ansys HFSS were used to guide the selection of appropriate materials and dimensions in the

process of designing the patch. The two main criteria guiding the patch design were:

• Resonant frequency of the sensor should fall within the X-band (8-12 GHz). Given that

any sample placed near the sensor will reduce its natural (isolated) resonant frequency,

this means that the air resonant frequency should be as near to the high end of the X-band

(i.e. 12 GHz) as possible so that, for many samples, the resonant frequency of the sensor

will stay within the band limits. This also means that some materials with relatively high
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permittivity (εr > 10, approximately) may cause the resonant frequency of the patch to

shift into the C-band (4-8 GHz)—this is a limitation on the types of materials that can

be characterized accurately with any particular patch.

• Patch dimensions should be relatively small. A single patch is useful in that it can be

scanned over a sample surface with a resultant resolution that depends upon the step size

of the scanning instrument. One drawback of scanning with a single patch is, however,

the time required and dependence upon mechanical methods to move the patch. A linear

array of patches could reduce the need for physical patch movement in one dimension,

with the drawback being that the lateral resolution is then limited by the inter-patch

spacing and patch size. Given that the desired resonant frequency of the isolated patch

is around 12 GHz, based on the first criterion given above, and that the patch antenna

is a half-wave resonator, one can expect the patch width/length dimension to be around

12.5 mm in free space. The presence of the substrate and distance from the groundplane

will act to reduce the wavelength and the required patch dimensions.

One choice that was made initially was the substrate material and height, so as to leave

only the patch width/length dimension for tuning. For highest possible resonant frequencies,

the substrate permittivity should be as low as possible. Since air (εr = 1) is impractical and

foams (1 < εr < 2) are not rigid enough to support a thin conductive patch, a rigid, low-

loss substrate with low permittivity was preferred. Although Taconic TLY-5 is not the lowest

possible permittivity substrate, it was chosen for the final patch design as it is a rigid and

durable woven glass-fiber laminate with real permittivity εr = 2.20 and loss tangent tan δ =

0.0009 at 10 GHz. In terms of substrate height, a thicker substrate decreases the resonant

frequency, which forces the patch dimensions to decrease to maintain a high resonant frequency.

However, there are practical problems associated with reducing the patch dimensions, such as

how to accurately feed an extremely small patch. On the other hand, a very thin substrate

would force the patch dimensions to be much larger than desired, if the resonant frequency is

to remain at around 12 GHz. In the end, a standard microwave substrate height was chosen:

1.143 mm (45 mil). A standard copper thickness of 35.56 µm (1 oz) was also chosen, as it was
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Figure 3.1 Initial HFSS simulation setup showing the basic component locations.

presumed thick enough to maintain durability during contact measurements and did not force

the sample to liftoff too far from the substrate.

Based upon an initial HFSS simulation of various patch dimensions and feeding locations,

the setup of which is shown in Figure 3.1, the patch width/length that provided the minimum

reflection and highest frequency using the substrate parameters described above was W =

L = 7.5 mm with a probe feed inset distance from the edge of 2.15 mm. A square patch

was chosen for simplicity, there being no particular advantage in a rectangular patch for this

application. In the simulation, an SMA connector feed was designed with standard materials

and dimensions. However, as will be discussed in the next section, it was found that the

minimum in the reflection coefficient |S11| is not a true determinant of resonant frequency due

to the feeding structure influence on input impedance.

3.3 Resonant frequency measurements

For experimental measurement of the patch antenna sensor parameters in a laboratory or

field environment, a vector network analyzer (VNA) is used. The VNA computes the scattering

parameters (S-parameters), which are ratios of reflected and transmitted voltage amplitudes

at network ports. Since the patch antenna sensor is a one-port network, the only measurable
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S-parameter is the S11 parameter, which is also the input reflection coefficient when viewed

from the source cable toward the antenna port. The S11 parameter is defined as

S11(f) = Γin(f) =
Zin(f)− Zc
Zin(f) + Zc

, (3.1)

where Zin is the input impedance of the antenna and Zc is the characteristic impedance of the

measurement cable (typically 50 Ω). The ratio in (3.1) is often expressed in units of decibels

(dB) such that

S11,dB(f) = 20 log

∣∣∣∣Zin(f)− Zc
Zin(f) + Zc

∣∣∣∣ , (3.2)

where the coefficient 20 (as opposed to 10) converts a voltage ratio to a power ratio (P ∼ V 2) by

a logarithm property. From (3.1) and (3.2), it is apparent that minimum reflection occurs when

Zin = Zc, resulting in a reflection of zero (or tending to −∞ dB). This condition will occur

at, or near, the resonant frequency since the input impedance of the antenna will dramatically

change near this frequency. Specifically, at resonance, the input resistance will be maximum

and the input reactance will be zero (realistically, near zero). Therefore, the measured resonant

frequency is defined in this research as

fr = f [Rin = max(Rin)] (3.3)

Far from the resonant frequency, the input resistance will be near zero, but at resonance the

input resistance will not necessarily be Zc, which means that somewhere near the resonant

frequency there will be a matched load and maximum power transfer, which is measurable on

the VNA as min[|S11(f)|].

Conversely, if the VNA provides only S-parameters and the input impedance is desired,

(3.1) can be rearranged to yield

Zin = Z11 = Zc
1 + S11
1− S11

, (3.4)

which is valid if a one-port network is in use.

3.3.1 Input impedance model

The input impedance is a complex quantity that is decomposed into real and imaginary

components as Zin(f) = Rin(f) + jXin(f), where Rin(f) is the resistance (proportional to
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energy lost to the circuit), Xin(f) is the reactance (proportional to energy stored in the circuit)

and j is the imaginary unit. The resistance arises from various sources of loss in an antenna

circuit—conductor losses, dielectric losses, radiation losses, surface wave losses, etc.—while the

reactance arises from competing sources of electric and magnetic energy, such as inductance

and capacitance of the various structures in the circuit. At resonance the resistance will rise

to a maximum due to maximum radiation while the reactance will, ideally, drop to zero since

all energy is being lost at that frequency.

In [1] the input impedance for a patch antenna sensor is defined as

Zin(f) =
Rres

1 +Q2
t

(
f
fr
− fr

f

)2 + j

XL(f)−
RresQt

(
f
fr
− fr

f

)
1 +Q2

t

(
f
fr
− fr

f

)2
 , (3.5)

where Rres is the maximum resistance that occurs at the resonant frequency fr, XL is the

inductive reactance due to the feeding probe, and Qt is the total quality (Q-) factor of the

patch, which contains the loss sources mentioned above and was described in greater detail in

Section 2.51. This equation is essentially a transfer function for a parallel RLC circuit. The

maximum resistance is defined as

Rres = Redge cos2
(πy0
L

)
=

Qth1
πfrε′r,dynε0WL

cos2
(πy0
L

)
, (3.6)

where Redge is the input resistance if the patch is fed from its edge, y0 is the feedpoint distance

from the edge along the length L, assuming the feedpoint is centered along the width W , and

ε′r,dyn is the real dynamic permittivity of the system, including the substrate and all sample

layers, discussed in the previous chapter. A top view of the patch showing the feeding location

is shown in Figure 3.2.

The feeding probe inductive reactance is defined as

XL(f) =
η0fh1
c

ln

(
c

πfd0
√
ε′req

)
, (3.7)

where η0 =
√
µ0/ε0 ≈ 120π Ω is the characteristic impedance of free space, d0 is the diameter

of the feed probe, and ε′req is the real static equivalent permittivity between the patch and the

1The inverse of Qt yields the effective loss tangent of the entire system.
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Figure 3.2 Top view of a patch fabrication design showing the feed offset from the edge, feed

pin, and groundplane cutout radius.

groundplane, a function of the substrate and layer permittivities, which will be discussed in

the next section.

As can be seen in (3.5), at the resonant frequency f = fr, the input impedance simplifies

to Zin = Rres + jXL. Ideally, Zin should be purely real at resonance, however, the necessary

presence of the probe feed contributes some inductive reactance irrespective of the resonant

frequency. Thus, S11 may not be at a minimum at exactly the resonant frequency, which

leaves the resistance being the better indicator of the true resonant frequency. These effects

are illustrated in Figures 3.3 and 3.4. A method for finding the true resonant frequency and

Q-factor will be presented in Section 3.4.2.

3.4 Experimental validation

In this section, final patch antenna sensor designs are presented for optimization via exper-

imental decision, a method for determining true resonant frequency and Q-factor is presented,

the final optimized designed is tested on a variety of materials to validate the model, and results

are discussed.
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Figure 3.3 Calculated input impedance of a patch antenna sensor. The resistive component

reaches a maximum, and the rate of change of the reactance is maximal, at the

true resonant frequency. Ideally, the reactance is zero at resonance, but the feed

structure contributes some significant inductive reactance that positively offsets

the reactance curve from the Xin = 0 line. The parameters used in this example

are W = L = 7.5 mm, εr1 = 2.2, h1 = 1.143 mm, tan δ1 = 0.0009, d0 = 1.27 mm

and y0 = 2.15 mm.

3.4.1 Final design parameters

The final design parameters for the patch antenna sensor are given in Table 3.1. As dis-

cussed in Section 3.2, the feed offset from the edge that produced the best reflection results

according to that calculation was 2.15 mm. However, using the input impedance model above

for calculating the optimal feed offset to achieve a resonance resistance of 50 Ω, the optimal

offset was determined as 2.885 mm. Another system variable was the effect of the ground-

plane cutout radius, which was found to reduce the resonant frequency as the cutout radius

increased. The radius needed to be larger than the feeding pin radius to prevent short circuits,

and since the minimum manufacturer circular etching tolerance was 0.8 mm, this was chosen

as one possible cutout radius. Another was approximately twice the radius of the feeding pin,

or 1.2 mm. A matrix of the four potential feeding parameters is given in Table 3.2.

On all four fabricated patch antenna sensors, a circular hole with radius 0.635 mm was

drilled through the substrate and patch layers at the specified feedpoint location. A 50 Ω SMA
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Figure 3.4 Calculated reflection coefficient of the patch antenna sensor showing minimal re-

flection at a frequency near, but not equal to, the true resonant frequency. This

offset is due to the feed inductive reactance. The parameters used in this example

are W = L = 7.5 mm, εr1 = 2.2, h1 = 1.143 mm, tan δ1 = 0.0009, d0 = 1.27 mm

and y0 = 2.15 mm.

female jack with protruding feeding pin, as shown in Figure 3.5, was then connected to the

sensor, with the pin soldered to the patch layer and the outer connector casing soldered to

the groundplane layer. Prior to soldering the pin to the patch, the top portion of the pin was

removed and filed away to be just below the surface of the patch once fully inserted. After

soldering the patch connection, a fine-grit sandpaper was used to file away the majority of the

protruding solder to yield a flat surface with minimal profile. The solder profile was checked

under microscope and had a thickness of less than 20 µm. A photo of the final patch connection

is shown in Figure 3.6.

3.4.2 Determining true resonant frequency and Q-factor

As mentioned in Section 3.3.1, finding the minimum in S11 is not the true locator of the

natural resonant frequency due to the series addition of the feeding inductance to the parallel

RLC circuit of the patch antenna sensor itself. The minimum in S11 is simply the point of

maximum power transfer and is the point at which the sensor is most efficiently operated as
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Table 3.1 Final patch parameters.

Parameter Dimension Units

Patch width W 7.5 mm

Patch length L 7.5 mm

Patch thickness t 35.56 µm

Patch conductivity σ 58 MS/m

Groundplane width/length 20 mm

Substrate height h1 1.143 mm

Substrate permittivity ε′r1 2.20

Substrate loss tangent tan δ1 0.0009

Feeding pin radius 0.635 mm

Air resonant frequency fr 11.82 GHz

Air Q-factor Qt 14.55

Table 3.2 Final feed offset and groundplane cutout radius dimensions, each with two options

for a total of four combinations.

Parameter Option 1 Option 2

Feed offset (mm) 2.15 2.885

Groundplane cutout radius (mm) 0.8 1.2

an antenna for long range energy transmission. This also means that the looking for the -3

dB (half-power) points on the S11 plot is not a good indicator of the sensor’s bandwidth or

Q-factor. According to (3.5), the real part Rin has three parameters: magnitude Rres, resonant

frequency fr and Q-factor Qt, where Rres is achieved at fr. This means that searching for the

maximum in Rin is the best indicator of the true resonant frequency. The imaginary part Xin

also contains these same parameters, where, in this case, the imaginary part of the RLC circuit

goes to zero at fr. The drawback here, though, is that the total imaginary part does not go

to zero at resonance because of XL. Finding the inflection point in Xin(f) could also reveal

where fr occurs.

Measured Q-factor for a parallel RLC circuit is generally determined from

Q =
fr
∆f

, (3.8)

which is also known as the fractional bandwidth. The bandwidth ∆f is usually the width

between the half-power points on a plot of S11 versus frequency, however, direct use of S11 data

interpretation has been ruled out as discussed above. The bandwidth definition itself is not
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SMA female jack

Signal pin

Flange mount
(ground)

PTFE insulator

Figure 3.5 SMA jack connector used to make electrical connection between the patch antenna

sensor and VNA cable. The female jack mates with the SMA cable, the flange

mount is soldered to the sensor groundplane, the signal pin is fed through the

substrate and soldered to the patch, with the polytetrafluoroethylene (PTFE)

layer insulating the signal pin from the grounded flange mount.

well-agreed upon within the RF community and is up to interpretation depending upon design

requirements. In [2] the definition of bandwidth is avoided altogether, with the defintion of Q

for an antenna as

Q ≈ ωr
2Rin(ωr)

∣∣∣∣ ddωZin(ωr)

∣∣∣∣ , (3.9)

where ω is the angular frequency and Rin(ωr) = Rres. This definition, however, requires

information from both the real and imaginary parts of input impedance, which could lead to

more uncertainty in a physical and/or noisy measurement.

Another approach is to define normalized Rin as a transfer function, where the bandwidth

occurs between the two points on the resistance slope where the amplitude has fallen to 1/
√

2 ≈

0.707. These points correspond to half-power points when the amplitude is squared to yield the

power transfer function. This definition deviates from the RLC transfer function in Section 3.3.1

since the measured Q would be higher than the Q as defined in the model. In fact, it is

found from (3.5) that in order to utilize the fractional bandwidth definition of Q in (3.8), the

corresponding two points on the resistance slope occur approximately where the amplitude has
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Copper patch

Feedpoint
Taconic TLY-5 
substrate

Figure 3.6 Top view of the soldered patch connection to the SMA jack. The Taconic TLY-5

substrate both structurally supports the patch above the groundplane and controls

the natural resonant frequency of the sensor. The SMA signal pin feeds through

the substrate and is soldered to the feedpoint of the copper patch.

fallen to half of the maximum. This scheme is also known as full width at half maximum

(FWHM) in signal processing.

For example, in Figure 3.7, the resonant frequency and Q-factor of an arbitrary antenna

and/or sample are calculated from the model to be 9.69 GHz and 20.47, respectively. By finding

the two approximate half-maximum amplitude points that occur on either side of the resonant

frequency, and by using (3.8), the measured Q-factor is computed as 20.62, a difference of

only 0.73 %, where some uncertainty can be attributed to the discrete measurement resolution.

This interpretation has been tested and found to hold with numerous other simulated patch

and sample configurations. Therefore, a good approximation of Q in (3.8) is given here as

Q =
fr

f+|(Rin=0.5Rres) − f−|(Rin=0.5Rres)
. (3.10)

The determination of resonant frequency and Q-factor from actual measured data requires

further algorithmic processing due to factors such as noise, peak skewness or ill-formation, and

the presence of higher order resonances and feedpoint resonances. The latter is exhibited in
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Figure 3.7 Calculated input impedance for an arbitrary patch antenna sensor showing the res-

onant frequency at 9.69 GHz, maximum resistance at resonance, and approximate

half-maximum amplitude points.

Figure 3.8, where the presence of a high-resistance resonance is readily visible and contrasts

sharply with the resonant frequency of the patch sensor due to a sample. The feedpoint

resonance occurs due to the interaction between the inductive feeding pin (as it is carrying a

current) and the capacitive gap (because there is a voltage differential separated by a dielectric

material) between the pin and the groundplane (or SMA connector jacket), essentially acting as

a cylindrical resonator as apparent by the high Q-factor. The high-impedance of this peak also

has a very high reflection, so it is not typically visible on S11 measurements, but is something

that must be accounted for when attempting to automate an algorithmic search for the patch

sensor resonant frequency. The feedpoint resonance peak does not shift to lower resonant

frequencies with increasing sample permittivity, leading to the potential problem that high-

permittivity samples can shift the patch sensor resonance such that it overlaps with this high-

impedance resonance and becomes convoluted with it.
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Figure 3.8 Measured input resistance showing a high-resistance resonance due to the res-

onation of the feedpoint and the lower-resistance patch sensor resonance due to a

sample.

Noisy data and peak skewness are also problematic for data interpretation, as the input

resistance, in theory, follows the smooth parallel RLC impedance distribution in (3.5), with

an amplitude (Rres), mean (fr) and shape factor (Q). This means that, if a parallel RLC

impedance curve could be fitted to the data, especially the upper half of an observed peak in

the data, the resonant frequency and Q-factor could be accurately and quickly obtained.

Before data can be fitted, however, several operations must first take place. The first is

to smooth the data to prevent unwanted peaks from appearing during peak detection. The

smoothing in this work was a moving average filter with a 2 % data span, which acts as a low-

pass filter to remove outliers but with a small enough span to retain potential resonance peaks.

The next operation is to search for these peaks, which can be done by searching for minima in

the second derivative of Rin or by using a built-in peak-searching function, such as MATLAB’s

findpeaks() function, which quickly returns an array of indices where local maxima occur

in the data. Without smoothing, the length of this array can be quite long, but with smoothing

a short array of approximately 5-10 elements is returned. Next, the true resonant peak must

be determined, which, for the chosen antenna, is typically the largest peak under 300 Ω, where



www.manaraa.com

56

anything larger is typically the feedpoint resonance. The true resonant frequency for a sample

measurement must also be less than or equal to the measured air resonant frequency (≈ 12 GHz)

for the lowest order mode (or dominant mode) as higher frequency (higher order) modes can

interfere with the searching algorithm. This potential interference is easily eliminated by fixing

the upper limit of the applied frequency sweep to a reasonable value just beyond the expected

dominant mode air resonant frequency. Finally, a window of data must be selected around the

detected peak to fit the RLC curve with minimal error. In this work, a span of about 8.6 %

(or 70 data points on either side of the peak, out of 1601 total points) was determined to be

sufficient for a variety of samples.

In summary, the resonant frequency and Q-factor measurement procedure was performed

as follows:

1. Smooth the data with a moving average filter and 2 % data point span.

2. Search for peaks, choose the largest peak under 300 Ω.

3. Select a total data span window of 8.6 %, centered around the peak index.

4. Perform RLC fitting on selected data; measured fr and Qt values are returned.

These parameters may be adjusted if the results do not appear close to the expected results.

This is especially true for the data window span, which has a significant influence on measured

Qt, particularly when data are noisy and skewed.

3.4.3 Materials

For the purposes of validating the model and assessing the performance of the fabricated

patch antenna sensor, a variety of well-characterized and uncharacterized materials were an-

alyzed using the sensor, the measured spectrum, and the data analysis algorithm presented

above. The materials with independently-measured properties, listed in Tables 3.3 and 3.4,

were divided into pure sheet samples without metal backplanes and samples that included

affixed copper backplanes. The uncharacterized materials, Table 3.5 had no permanent af-
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Table 3.3 Rogers materials with no metal backplane. All dielectric parameters (provided by

the manufacturer) are given at 10 GHz.

Material Thickness (mm) ε′r tan δ

RO3003 0.508± 0.03 3.00± 0.04 0.0010

RT/duroid 5870 1.575± 0.05 2.33± 0.02 0.0012

RT/duroid 5880 1.575± 0.05 2.20± 0.02 0.0009

TMM3 0.508± 0.04 3.27± 0.03 0.0020

TMM4 0.508± 0.04 4.50± 0.05 0.0020

TMM6 0.635± 0.04 6.00± 0.08 0.0023

TMM10 0.635± 0.04 9.20± 0.2 0.0022

TMM10i 0.635± 0.04 9.80± 0.2 0.0020

Table 3.4 Rogers materials with metal backplane composed of 35.56 µm thickness of copper.

All dielectric parameters (provided by the manufacturer) are given at 10 GHz.

Material Thickness (mm) ε′r tan δ

RT/duroid 5870 1.575± 0.05 2.33± 0.02 0.0012

RT/duroid 5880 1.575± 0.05 2.20± 0.02 0.0009

TMM3 6.350± 0.04 3.27± 0.03 0.0020

TMM4 6.350± 0.04 4.50± 0.05 0.0020

TMM6 6.350± 0.04 6.00± 0.08 0.0023

TMM10 6.350± 0.04 9.20± 0.2 0.0022

TMM10i 6.350± 0.04 9.80± 0.2 0.0020

fixed backplane, but an aluminum plate was clamped in contact with the sample to act as a

backplane.

The backplane and non-backplane materials in Tables 3.3 and 3.4 are the same apart from

the addition of RO3003 in Table 3.3 and the different thicknesses for most of the materi-

als. Rogers RO3000-series materials are low-loss, ceramic-filled polytetrafluoroethylene (PTFE)

composites designed for microwave circuit functionality up to 77 GHz [3]. Rogers RT/duroid

Table 3.5 Uncharacterized materials and measured thicknesses. These samples do not have a

metal backplane.

Material Thickness (mm)

Glass-fiber composite 1.27

FR4/G-10 3.18

Nylon 3.18

Glass 1.80
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5870/5880 are glass microfiber-reinforced PTFE composites with low loss up to and beyond the

Ku-band (12-18 GHz) [4]. Rogers TMM-series materials are ceramic, hydrocarbon, thermoset

polymer-matrix composites designed with a coefficient of thermal expansion to match that of

copper [5]. For the uncharacterized materials, FR4 and nylon were chosen in order to analyze

their significant lossiness at lower frequencies [6] [7]. For example, both FR4 and nylon have

a loss tangent of approximately 0.02 at 1 MHz. Glass and glass-fiber composite also have a

wide-range of permittivity values that are useful for an exemplar analysis of a material with

unknown properties. Photos of the samples listed in Tables 3.3, 3.4 and 3.5 are shown in

Figures 3.9, 3.10 and 3.11, respectively.

3.4.4 Experimental procedure

The setup for the experimental procedure is shown in Figures 3.12 and 3.13. A test fixture

comprised a vertically-mobile base, metal vertical and horizontal support structure and a poly-

carbonate tube to hold the SMA cable between the VNA and patch antenna sensor in a fixed

position during calibration and testing. The base has a hand crank to make repeatable and

precise liftoff adjustments by lifting the cable test fixture above the sample. The adjustments

were measured by a digital micrometer with 1 µm uncertainty. The 30-cm-long polycarbonate

tube forces the cable into a straight path above the SMA/sensor connection to maintain the

sensor’s parallel orientation to the sample surface; nylon screws are situated around the tube

to make fine tuning adjustments on the straightness of the cable. The cable is a 121.9-cm-long,

50 Ω coaxial cable capable of operation up to 18 GHz.

The VNA is an Anritsu 37347C capable of operation between 40 MHz and 20 GHz. Before

measurements could begin, the VNA had to be calibrated by selecting the frequency range (1601

points across 6-13 GHz in this work) and placing open, short and broadband 50 Ω terminations

at the end of the cable. A desktop computer graphical user interface (GUI) program was

created using National Instruments LabVIEW to communicate with, command and transfer

data from the VNA in S-parameter form, which was converted to complex impedance in the

GUI.
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Figure 3.9 Rogers microwave materials with no metal backplane and properties listed in Table

3.4. From left to right: RO3003, RT/d5870, RT/d5880, TMM3, TMM4, TMM6,

TMM10 and TMM10i.

Figure 3.10 Rogers microwave materials with metal backplane and properties listed in Ta-

ble 3.4. From top left to bottom right: RT/d5870, RT/d5880, TMM3, TMM4,

TMM6, TMM10 and TMM10i.
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Figure 3.11 Uncharacterized materials with properties listed in Table 3.5. From left to right:

glass (transparent), glass-fiber composite, nylon and FR4.

VNA

Microwave
absorber

Metal backplane

Air background

Sensor

(a)

(b)

Sample

SMA cable

Figure 3.12 Experimental setup showing VNA, SMA cable, patch antenna sensor, sample and

microwave absorbing material. Inset (a) shows the setup for samples with affixed

or external metal backplanes (backplane not shown in the inset). An acrylic table

supports the sample, with the metal backplane situated between the table and

the sample. Inset (b) shows the setup for samples with no metal backplane. A

hollow acrylic tube supports the sample and a microwave absorbing material is

placed at the bottom of the cylinder to simulate an air background.
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For measurements on samples with metal backplanes (either affixed or external), as shown

in Figure 3.12(a), the sample was placed atop an acrylic table such that the backplane was

situated between the sample and acrylic, thus restricting near-fields to the sample and away

from the table. For samples without a backplane, a hollow acrylic tube supported the sample

and a microwave absorbing material was placed at the opposite end of the tube. With the sensor

situated above the center of the tube, the setup approximately simulated an air background,

Figure 3.12(b). For contact measurements, the sensor was lowered from a small height above

the sample using the hand crank on the base until the fixture encountered some slight upward

resistance and no air gap was visible between the patch and sample. For measurements with a

fixed liftoff between the patch and the sample, the sensor was brought from a contact position

until the desired liftoff value was achieved on the micrometer, as shown in Figure 3.13.

Microwave
absorber

SMA cable

Sensor

Test fixture

Digital indicator

Liftoff 
adjust

Figure 3.13 Experimental setup showing test fixture with polycarbonate tube containing SMA

cable, patch antenna sensor, sample, microwave absorbing material, vertically–

mobile test fixture base, liftoff adjustment crank and micrometer with digital

indicator for liftofff measurement.
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Multilayer combinations of the characterized materials were also analyzed using the patch

sensor. For multilayer samples including the backplane, the backplane sample acted as the final

layer while the non-backplane layers were placed between the backplane sample and the sensor.

Multilayer samples are only constructed from compression contact, meaning there is some air

between layers.

3.4.5 Results

In this section are presented the final measured resonant frequency and Q-factor results

in tabulated form for all samples, in comparison with the values obtained using the model

presented in Chapter 2 and values calculated using HFSS. The sensor, whose parameters are

given in Table 3.2, had a feed offset of 2.15 mm from the edge and a groundplane cutout radius

of 0.8 mm, as this design produced the least error with between measured and expected results.

In Tables 3.6 3.7, calculated and measured resonant frequencies and Q-factors, respectively,

are given for 1-layer, 2-layer and 3-layer combinations of the air-backed materials backed by air

listed in Table 3.3. Calculated and measured liftoff resonant frequencies and Q-factors for single

layers of the same air-backed materials are listed in Tables 3.8 and 3.9, respectively. In Tables

3.10 and 3.11, calculated and measured resonant frequencies and Q-factors, respectively, are

given for 1-layer, 2-layer and 3-layer combinations of both the backplane samples listed in Table

3.4 and the non-backplane samples listed in Table 3.3. In the case of 1-layer samples, only the

backplane samples are used. For 2- and 3-layer samples, the backplane layer is one furthest from

the patch while the non-backplane layers are placed between the patch and backplane layers.

Calculated and measured liftoff resonant frequencies and Q-factors for single layers of the

same metal-backed samples are listed in Tables 3.12 and 3.13, respectively. Measured resonant

frequencies and Q-factors for uncharacterized materials are listed in Table 3.14. Percentage

errors for each sample listed in all tables are given relative to the model results for the purposes

of validating the model. An average absolute value percent error is given at the bottom of each

table. The results are discussed in the following section.
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Table 3.6 Calculated, measured and simulated resonant frequencies for the patch sensor in

contact with non-backplane samples with air background. For multilayer samples,

the sample materials are listed in order away from the patch surface. Mean errors

listed are means of absolute values.

Material layers fr fr fr Error Error

model meas. HFSS meas. HFSS

(GHz) (GHz) (GHz) (%) (%)

Air 11.82 12.00 12.32 1.5 4.2

RO3003 11.22 11.50 11.59 2.5 3.3

RT/d5870 11.03 11.27 11.42 2.2 3.5

RT/d5880 11.09 11.34 11.52 2.3 3.9

TMM3 11.17 11.37 11.49 1.8 2.9

TMM4 10.94 10.99 11.16 0.5 2.0

TMM6 10.57 10.44 10.60 -1.2 0.3

TMM10 10.15 9.81 9.89 -3.3 -2.6

TMM10i 10.08 9.86 9.78 -2.2 -3.0

TMM10i—RT/d5870 9.80 9.52 9.39 -2.9 -4.2

TMM10—RT/d5880 9.88 9.49 9.52 -3.9 -3.6

TMM6—TMM3 10.34 10.12 10.29 -2.1 -0.5

TMM3—TMM6 10.52 10.45 10.65 -0.7 1.2

RT/d5880—TMM10 10.65 10.46 10.89 -1.8 2.3

RT/d5870—TMM10i 10.57 10.41 10.73 -1.5 1.5

TMM10i—TMM6—TMM3 9.54 8.80 8.95 -7.8 -6.2

TMM6—TMM10i—TMM3 9.66 8.85 9.12 -8.4 -5.6

TMM6—TMM4—TMM10 9.73 9.31 9.18 -4.3 -5.7

TMM4—TMM6—TMM10 9.81 9.30 9.49 -5.2 -3.3

Mean 1-layer error: 1.9 2.8

Mean 2-layer error: 2.1 2.2

Mean 3-layer error: 6.4 5.2
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Table 3.7 Calculated, measured and simulated Q-factors for the patch sensor in contact with

non-backplane samples with air background. For multilayer samples, the sample

materials are listed in order away from the patch surface. Mean errors listed are

means of absolute values.

Material layers Qt Qt Qt Error Error

model meas. HFSS meas. HFSS

(%) (%)

Air 14.55 17.64 15.00 21 3.1

RO3003 16.26 18.67 15.00 15 -7.7

RT/d5870 16.90 13.55 12.37 -20 -27

RT/d5880 16.70 15.55 12.55 -6.9 -25

TMM3 16.43 16.44 15.03 0.1 -8.5

TMM4 17.18 11.90 15.20 -31 -12

TMM6 18.54 12.50 15.13 -33 -18

TMM10 20.31 15.58 16.32 -23 -20

TMM10i 20.63 15.12 16.63 -27 -19

TMM10i—RT/d5870 22.02 13.35 14.04 -39 -36

TMM10—RT/d5880 21.59 13.67 13.93 -37 -35

TMM6—TMM3 19.47 12.57 13.94 -35 -28

TMM3—TMM6 18.72 10.12 11.60 -46 -38

RT/d5880—TMM10 18.24 6.86 3.84 -62 -79

RT/d5870—TMM10i 18.56 6.25 3.37 -66 -82

TMM10i—TMM6—TMM3 23.40 11.03 13.43 -53 -43

TMM6—TMM10i—TMM3 22.70 9.35 10.69 -59 -53

TMM6—TMM4—TMM10 22.35 8.16 9.17 -63 -59

TMM4—TMM6—TMM10 21.92 7.96 8.62 -64 -61

Mean 1-layer error: 20 16

Mean 2-layer error: 48 50

Mean 3-layer error: 60 54
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Table 3.8 Calculated, measured and simulated resonant frequencies for the patch sensor at

0.75 mm liftoff distance from non-backplane samples with air background. Mean

errors listed are means of absolute values.

Material layers fr fr fr Error Error

model meas. HFSS meas. HFSS

(GHz) (GHz) (GHz) (%) (%)

RO3003 11.61 11.78 12.11 1.5 4.3

RT/d5870 11.49 11.60 12.04 1.0 4.8

RT/d5880 11.51 11.66 12.06 1.3 4.8

TMM3 11.59 11.73 12.08 1.2 4.2

TMM4 11.51 11.59 11.98 0.7 4.1

TMM6 11.35 11.20 11.76 -1.3 3.6

TMM10 11.18 10.77 11.38 -3.7 1.8

TMM10i 11.15 10.91 11.30 -2.2 1.3

Mean error: 1.6 3.6

Table 3.9 Calculated, measured and simulated Q-factors for the patch sensor at 0.75 mm liftoff

distance from non-backplane samples with air background. Mean errors listed are

means of absolute values.

Material layers Qt Qt Qt Error Error

model meas. HFSS meas. HFSS

(%) (%)

RO3003 15.12 17.63 13.05 17 -14

RT/d5870 15.47 15.38 10.20 -0.6 -34

RT/d5880 15.40 15.35 10.56 -0.3 -31

TMM3 15.17 17.75 12.82 17 -15

TMM4 15.41 17.72 11.86 15 -23

TMM6 15.86 12.48 9.61 -21 -39

TMM10 16.40 9.39 7.42 -43 -55

TMM10i 16.49 8.43 7.15 -49 -57

Mean error: 20 34
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Table 3.10 Calculated, measured and simulated resonant frequencies for the patch sensor in

contact with samples with backplanes behind the layer(s). For multilayer samples,

the sample materials are listed in order away from the patch surface, with the

affixed backplane sample being the last and the non-backplane layers in between.

Mean errors listed are means of absolute values.

Material layers fr fr fr Error Error

model meas. HFSS meas. HFSS

(GHz) (GHz) (GHz) (%) (%)

RT/d5870 8.12 8.98 9.24 11 14

RT/d5880 8.25 9.02 9.20 9.3 12

TMM3 9.39 10.05 10.12 7.0 7.8

TMM4 8.65 9.07 9.28 4.9 7.3

TMM6 7.97 8.29 8.53 4.0 7.0

TMM10 6.94 6.95 6.47 0.1 -6.8

TMM10i 6.79 6.98 6.31 2.8 -7.1

TMM10i—RT/d5870 7.68 8.16 8.22 6.3 7.0

TMM10—RT/d5880 7.82 8.17 8.20 4.5 4.9

TMM6—TMM3 9.03 9.39 9.42 4.0 4.3

TMM3—TMM6 8.43 8.04 8.49 -4.6 0.7

RT/d5880—TMM10 9.17 8.65 9.15 -5.7 -0.2

RT/d5870—TMM10i 9.03 8.60 8.99 -4.8 -0.4

TMM10i—TMM6—TMM3 8.20 7.97 8.34 -2.8 1.7

TMM6—TMM10i—TMM3 8.32 8.02 8.40 -3.6 1.0

TMM6—TMM4—TMM10 7.64 8.28 7.27 8.4 -4.8

TMM4—TMM6—TMM10 7.72 8.29 7.29 7.4 -5.6

Mean 1-layer error: 5.5 8.7

Mean 2-layer error: 5.0 2.9

Mean 3-layer error: 5.5 3.3
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Table 3.11 Calculated and measured Q-factors for the patch sensor in contact with samples

with backplanes behind the layer(s). For multilayer samples, the sample materials

are listed in order away from the patch surface, with the affixed backplane sample

being the last and the non-backplane layers in between. Mean errors listed are

means of absolute values.

Material layers Qt Qt Qt Error Error

model meas. HFSS meas. HFSS

(%) (%)

RT/d5870 22.66 12.33 20.12 -46 -11

RT/d5880 21.82 11.36 19.47 -48 -11

TMM3 22.87 45.15 25.04 97 9.5

TMM4 27.68 20.56 14.37 -26 -48

TMM6 33.55 25.88 12.16 -23 -64

TMM10 46.77 19.43 15.03 -58 -68

TMM10i 49.54 15.12 14.19 -69 -71

TMM10i—RT/d5870 29.94 12.31 10.25 -59 -66

TMM10—RT/d5880 28.67 11.53 8.53 -60 -70

TMM6—TMM3 25.25 40.02 19.29 58 -24

TMM3—TMM6 29.54 21.10 14.65 -29 -50

RT/d5880—TMM10 24.65 12.95 13.11 -47 -47

RT/d5870—TMM10i 25.88 12.35 13.60 -52 -47

TMM10i—TMM6—TMM3 31.93 22.54 13.43 -29 -58

TMM6—TMM10i—TMM3 30.78 23.12 13.80 -25 -55

TMM6—TMM4—TMM10 37.62 18.49 12.48 -51 -67

TMM4—TMM6—TMM10 36.72 17.85 12.36 -51 -66

Mean 1-layer error: 53 40

Mean 2-layer error: 51 51

Mean 3-layer error: 39 62

Table 3.12 Calculated, measured and simulated resonant frequencies for the patch sensor at

0.75 mm liftoff distance from metal-backed samples. Mean errors listed are means

of absolute values.

Material layers fr fr fr Error Error

model meas. HFSS meas. HFSS

(GHz) (GHz) (GHz) (%) (%)

RT/d5870 9.92 9.76 9.53 -1.6 -3.9

RT/d5880 9.97 9.81 9.58 -1.6 -3.9

TMM3 10.52 10.32 10.54 -1.9 0.2

TMM4 10.20 9.16 9.60 -10 -5.9

TMM6 9.93 8.11 8.70 -18 -12

TMM10 9.57 9.42 9.78 -1.6 2.2

TMM10i 9.52 9.48 9.62 -0.4 1.1

Mean error: 5.1 4.2
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Table 3.13 Calculated, measured and simulated Q-factors for the patch sensor at 0.75 mm

liftoff distance from backplane samples. Mean errors listed are means of absolute

values.

Material layers Qt Qt Qt Error Error

model meas. HFSS meas. HFSS

(%) (%)

RT/d5870 16.92 10.52 12.91 -38 -24

RT/d5880 16.74 12.11 12.47 -28 -26

TMM3 17.92 21.94 29.78 22 66

TMM4 19.22 15.31 18.12 -20 -5.7

TMM6 20.44 17.63 15.84 -14 -23

TMM10 22.28 7.74 15.74 -65 -29

TMM10i 22.56 10.08 15.30 -55 -32

Mean error: 35 26

Table 3.14 Measured resonant frequencies and Q-factors for the patch sensor in contact with

the uncharacterized materials. Data for measurements with and without a back-

plane are given.

Without backplane With backplane

Material layers fr Qt fr Qt
(GHz) (GHz)

Glass-fiber composite 10.58 11.66 8.84 18.53

FR4/G-10 10.54 3.79 7.43 9.00

Nylon 10.69 6.96 7.88 9.73

Glass 9.32 8.71 7.90 24.95
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3.4.6 Discussion

The measured resonant frequency data, as presented in the previous section, agree very well

with the model, with an overall mean error for contact measurements of 4.4 %. In general,

the error tends to increase with more sample layers, and reasons for this are: (1) more layers

bring compounded uncertainties, due to permittivity and height variations in each layer, and

(2) the layers are only in contact with one another and not bonded, leaving possible slight air

gaps between them. Although air is in high dielectric contrast with the materials examined

in this work, the gaps are of such low height that their influence should be minimal, and

indeed the measured frequencies are not consistently greater than the calculated frequencies,

which means that it is not likely to be the dominant source of error. However, the samples

without a backplane, which were very thin in comparison to most of those with backplanes,

had a slightly curved surface that increased the difficulty in achieving good contact between

layers and between the layers and the sensor. It is also observed that the presence of the

backplane increases the mean error for all samples (e.g. the 1-layer error for contact non-

backplane samples 1.9 %, while that for 1-layer contact backplane samples was 6.4 %), and

this may be attributed to several factors. In these experiments, the backplane was not actually

grounded—being a very good conductor at a floating electric potential relative to the VNA

ground or circuit reference point.

Values for measured Q-factor, on the other hand, were off from the model by a significant

percentage error and do not appear to significantly vary between samples with and without

a backplane, although the single-layer non-backplane sample had a significantly smaller error

than the others (20 %, compared to 39-60 % for the remaining backplane and non-backplane

1-, 2- and 3-layer samples). There are two possible sources of error in this case: (1) the Q-

factor model is inaccurate, and/or (2) the data fitting algorithm and Q-factor computation

lacks robustness. If the model is the source of error, it is most likely due to the calculation

of Qr, which, being the dominant loss contributor, is the most likely contributor to the error.

If the measurement algorithm is the source of error, then it is most likely due either to the

chosen method of computing measured Qt as opposed to the large variety of other methods,



www.manaraa.com

70

or to the size of the data window to fit the parallel RLC impedance curve. This was indeed

observed to be an issue, as varying the window size could significantly reduce the error for

one sample but increase it for another. As all samples were given the same window size for

the sake of comparison, all measured values suffered some error due to the window choice.

Finally, both the metal backing and substrate have finite length and width dimensions, which

are assumed to be infinite in the model. The finite dimensions of these components are chosen

to be much larger than the patch dimensions such that the static fringing fields do not interact

with the edges. For generated surface-traveling waves from the patch, the finite dimensions of

the metal backing and substrate may lead to reflections that interfere with the infinite-length

approximation from which Qr and Qsw are derived, which may account for some of the differ-

ences between modeled and measured values. Ascertaining the value of Qsw by measurement

may be prohibitively difficult, but in future work, it would prove beneficial to correlate Qsw

with the change in resonant frequency as a function of groundplane/substrate dimensions by

HFSS simulation, which would also determine the optimal groundplane dimensions for which

the infinite groundplane approximation holds true.

Liftoff resonant frequency measurements showed strong agreement with the model while

those for Q-factor showed relatively good agreement with the model when compared to the

in-contact measurements. The mean resonant frequency error was 3.4 % while the mean Q-

factor error was 28 %. The reason for the relatively low error is most likely the reduction of

uncertainties that are involved when the patch is in contact with the sample, as the model

assumes a physically infinitesimal sheet as the patch with dimensional corrections for a patch

of finite thickness. This means that when a physical patch is in contact with a sample, there is

an air gap between the substrate and sample, despite there being no air gap between the patch

itself and the sample. When a sample is further away, this gap becomes insignificant compared

to the liftoff distance. Yet again, however, the metal backing on some of the samples appears

to have introduced significant uncertainty, with the mean metal-backed resonant frequency and

Q-factor error being 5.1 % and 35 %, respectively, compared to those for the air-backed samples

of 1.6 % and 20 %, respectively.
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For the uncharacterized samples, one observation that makes intuitive sense is that the

addition of the backplane reduces the resonant frequency and increases the Q-factor (due to

more energy storage in the electric field) of all samples. The presence of the backplane greatly

increases the Q-factor of glass-fiber composite and solid glass due to these samples being the

thinnest (storing even more electric energy due to the capacitive effect of the metal backplane).

Another observation is that FR4 and nylon, having the exact same thickness, have similar reso-

nant frequencies, with nylon having a slightly higher resonant frequency in both backplane and

non-backplane cases. This suggests, intuitively, that FR4 has a slightly higher real permittivity

than nylon. However, the extremely low Q-factor of FR4 suggests that it is significantly more

lossy than nylon.

Finally, HFSS simulated results showed similar agreement with the model, with an overall

resonant frequency mean error of 4.2 % for in-contact samples, while mean Q-factor errors

ranged from 16-62 % for in-contact samples. Again, liftoff simulations were in good agreement

with the model, with a resonant frequency mean error of 3.9 % and mean Q-factor error of

30 %. In general, HFSS Q-factor results tended to agree better with the measured results rather

than the model results. This observation adds weight to the above deduction that the Q-factor

model is the primary source of error rather than the measurement algorithm and curve-fitting.

3.5 Sensitivity analysis

Using the final design presented in Section 3.4.1, a study was conducted to determine the

resonant frequency and Q-factor sensitivities of the sensor to changes in sample height, real

permittivity and loss tangent. Four types of sample structure were modeled, shown in Figure

3.14. Type I is a simple, one-layer sample with an air background. Type II is also a one-

layer dielectric, backed with a backplane background. Type III is a two-layer sample with

air background, and Type IV is a two-layer sample backed with a backplane. In the study,

Types III and IV have subtypes A and B, corresponding to parametric variations the first or

second sample layer only (overall Layer 2 and 3), respectively. For the fixed layers, Layer 2

is assumed to be a thin paint layer while Layer 3 is assumed to be a thick glass-fiber layer,

each with parameters listed in Table 3.15. The test-piece parameters were selected based upon
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one potential practical aerospace application of the sensor. The study is separated into two

parts: resonant frequency sensitivity to real permittivity changes and Q-factor sensitivity to

loss tangent changes.
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Figure 3.14 Four types of sample layups used in the sensitivity study. Types III and IV have

subtypes A and B, where A has a fixed Layer 3 and B has a fixed Layer 2. Fixed

layer parameters are given in Table 3.15.

Table 3.15 Fixed layer parameters used in the patch antenna sensor sensitivity study. Sample

subtypes A have fixed Layer 3 parameters while sample subtypes B have fixed

Layer 2 parameters.

h (mm) ε′r tan δ

Layer 2 0.127 4.7 0.024

Layer 3 6.35 4.1 0.004

3.5.1 Resonant frequency sensitivity

The resonant frequency variation for Type I in Figure 3.15 shows, for a very thin sample

layer, all resonant frequencies starting at the air point value of 11.82 GHz, and separating as

the sample increases height, reaching asymptotic values at which the sample appears effectively

infinitely thick, at h2/h1 ≈ 20. The resonant frequency is always lower for higher permittivity

samples. For Type II, Figure 3.16, very thin samples backed by a backplane cause the resonant
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frequency to approach zero. The curves separate as the thickness of the dielectric increases,

and approach the same thick-sample asymptotes as in Type I, when the sample backplane is

sufficiently far away from the sensor. Type III-A samples, Figure 3.17, show a thin-sample

convergence for all permittivity values at approximately 9.7 GHz, which is due to Layer 3

dominating the fields for thin Layer 2. As the sample gets thicker, the resonant frequencies for

samples with permittivity less than that of Layer 3 while the frequencies for higher permittivity

samples decrease, as Layer 2 dominates the near-fields. Type III-B, Figure 3.18 shows another

convergence for all permittivity samples at approximately 11.5 GHz, which is the value due

solely to the thin Layer 2 backed by air. Type IV-A, Figure 3.19, shows the resonant frequencies

converging at 8.8 GHz for thin Layer 2, then separating into thick-layer asymptotes. Of interest

is the Layer 2 samples with permittivity higher than that of Layer 3 which briefly decrease before

approaching the thick-layer asymptote. This initial decrease is due to the competing influence

of the increasing Layer 2 thickness and the increasing distance of the backplane from the patch.

Type IV-B, Figure 3.20, shows a similar pattern to Type II, with the exception that the thin

Layer 2 forces the backplane to begin at a further distance from the patch, hence beginning at

a slightly higher convergent resonant frequency point.
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Figure 3.15 Calculated resonant frequency shifts for Type I sample. Fixed layer parameters

are given in Table 3.15.
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Figure 3.16 Calculated resonant frequency shifts for Type II sample. Fixed layer parameters

are given in Table 3.15.
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Figure 3.17 Calculated resonant frequency shifts for Type III-A sample. Fixed layer param-

eters are given in Table 3.15.
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Figure 3.18 Calculated resonant frequency shifts for Type III-B sample. Fixed layer parame-

ters are given in Table 3.15.
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Figure 3.19 Calculated resonant frequency shifts for Type IV-A sample. Fixed layer parame-

ters are given in Table 3.15.
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Figure 3.20 Calculated resonant frequency shifts for Type IV-B sample. Fixed layer parame-

ters are given in Table 3.15.
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3.5.2 Q-factor sensitivity

The Q-factor shifts due to loss tangent and Layer 2 sample thickness for Type I samples,

Figure 3.21, show a thin-sample convergence point that approaches the value for the patch

antenna sensor in air. For samples with relatively low loss tangents (tan δ = 0.0001, 0.001, 0.01),

the Q-factor increases with increasing sample thickness, due to more electric energy being

stored. For lossier samples, the Q-factor decreases further from the air value for increasing

sample thickness, due to more energy being lost. Type II, Figure 3.22, gives rise near-zero Q-

factor for thin samples, due to the sample backplane causing the resonant frequency to approach

zero. The primary loss in this region is conductor loss, as radiation loss is significantly decreased

by the sample backplane being in close proximity. As the Layer 2 thickness approaches a value

of 0.2h1, the conductor losses decrease and radiation losses begin to increase, before approaching

thick-sample asymptotes that are no longer influenced by the backplane. Types III-A and III-B

samples, Figures 3.23 and 3.24, again show the common trend of increasing Q for less lossy

samples with increasing thickness, while decreasing Q for highly lossy samples. Type IV-A,

Figure 3.25 again shows this trend, while Type IV-B, Figure 3.26 shows a similar behavior to

Type II, due to the close proximity of the backplane for thin Layer 3 and the thin Layer 2

preventing near-contact of the patch with the backplane.

3.6 Conclusion

In this chapter, the model from Chapter 2 was utilized to develop practical patch antenna

sensor for low-conductivity material characterization in the X-band. A new method for resonant

frequency and Q-factor determination from measured data was presented with the goal of

finding the true values based on impedance data rather than on reflection data. The sensor was

tested on a variety of characterized materials, with and without sample backplanes, for model

validation, in addition to four uncharacterized materials for analysis of realistically unknown

materials. Measured resonant frequencies were found to be in good agreement with the model,

while those of measured Q-factor were of moderate agreement, and sources for error in both

measurements were discussed.
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Figure 3.21 Calculated Q-factor shifts for Type I sample. Fixed layer parameters are given

in Table 3.15.
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Figure 3.22 Calculated Q-factor shifts for Type II sample. Fixed layer parameters are given

in Table 3.15.
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Figure 3.23 Calculated Q-factor shifts for Type III-A sample. Fixed layer parameters are

given in Table 3.15.
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Figure 3.24 Calculated Q-factor shifts for Type III-B sample. Fixed layer parameters are

given in Table 3.15.
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Figure 3.25 Calculated Q-factor shifts for Type IV-A sample. Fixed layer parameters are

given in Table 3.15.
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Figure 3.26 Calculated Q-factor shifts for Type IV-B sample. Fixed layer parameters are

given in Table 3.15.
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3.7 Future work

In future work, the goal is twofold: to develop a robust model that can be used to infer the

complex permittivity of an unknown sample layer or the effective permittivity of a multilayer

structure as viewed by the patch sensor, and to scan over samples surfaces to create images

based on variations in complex permittivity values. Complex permittivity inversion requires

knowledge of thickness and permittivity of all sample layers except for the layer of interest.

Currently, the observed discrepancy between calculated and measured Q-factor suggests that

further work is needed to reduce the discrepancy before reliable inversion can be conducted. One

particular challenge with finding the loss tangent of a sample material based upon measurement

of the sensor’s Q-factor is that the Q-factor is the inverse of a summation of several inverted

Q-factor contributions. The uncertainty in all of these contributions must be small in order

to calculate an accurate and non-negative value for Qd, and, hence, an accurate value for the

material’s loss tangent. In order to obtain accurate Qd measurements, Qr must be increased

to allow Qd to at least partially dominate Qt (i.e. Qd must be on the same order as Qr).

Samples that would give the lowest Qr contribution (increasing it) would be those that reduce

the radiation conductance Gr and characteristic impedance viewed from the width edge, ZW ,

which would be any material that significantly reduces the resonant frequency, by either having

a larger thickness or permittivity (or a metal backing). Qd can only dominate when either the

sample loss tangent exceeds 1/Qr or when there is a metal backing to increase Qr.

The patch antenna sensor may also benefit from a different feeding scheme as well, such as

an edge feed rather than a probe feed, because the feeding pin and SMA jack structure add an

unwanted resonance that limits the maximum permittivity of a sample that the patch antenna

sensor is capable of characterizing. A more robust data measurement algorithm would also

provide some relief to this issue.
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CHAPTER 4. DIELECTROMETRY SENSORS FOR

NONDESTRUCTIVE TESTING OF GLASS-FIBER POLYMER MATRIX

COMPOSITES

A paper published in Materials Evaluation

Robert T. Sheldon and Nicola Bowler

4.1 Introduction

The need to understand the structural integrity of and to nondestructively characterize

composite materials has existed for many years, and over that time a multitude of nondestruc-

tive testing (NDT) techniques have been developed for this purpose. In the early years, the

majority of NDT techniques revolved around the use of qualitative NDT, mainly visual in-

spection. To characterize materials quantitatively on the surface or within required the use of

techniques capable of providing quantitative information such as radiography, ultrasonic test-

ing (UT) and eddy current (eddy current) testing [1]. The wide employment of metals in many

structures for energy production (for example, in pipelines), transportation (in ground-based

vehicles, water-borne vessels, aircraft and spacecraft) and civil infrastructure (for example, in

bridges) means that certain forms of electrical testing are well developed. For example, the

time-harmonic eddy current generated by a primary coil is influenced by discontinuities in the

conductivity of the test piece, and the primary coil impedance responds accordingly, allowing

inspection of surface and subsurface qualities in metals by eddy current NDT [2].

The emergence of polymer-matrix composites (PMCs) in many applications over the past

decades, however, presents a need for new inspection techniques. Typical damage such as

disbonds, delaminations, porosity and the presence of foreign objects can be well characterized
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by UT, but monitoring the effects of long-term aging and the prediction of remaining useful life

of PMCs is still an open challenge [3][4][5]. Environmental aging, a term used to describe aging

due to elevated temperature, humidity, chemical exposure, ionizing and non-ionizing radiation,

and so on, generally causes changes in the properties of polymer systemsnot only PMCs but also

wire and cable insulation, gaskets, O-rings, sealant, electrical circuit components, and many

others. Often, the dielectric properties of these materials change as the material ages, offering

the possibility of monitoring the material state by capacitive measurements [6]. Capacitive

measurements can be made intermittently using a probing device or may be placed in situ for

structural health monitoring [7][8].

In this paper, the ability of certain capacitive sensors to measure thermally-induced changes

in a glass-fiber PMC was investigated. In reality, a material is usually exposed to combinations

of the aging factors listed in the previous paragraph, but in this paper, thermal aging was

selected in order to prove the concept of the sensing technique. Capacitive sensors are ideally

suited for characterizing dielectrics such as those listed in the previous paragraph, but since

it is often inconvenient or impossible to access both sides of a test piece, the simplest form of

capacitor, the parallel-plate capacitor, Figure 4.1(a), is of limited use. For a single-sided inspec-

tion, both plates (electrodes) may be coplanar with one another, Figure 4.1(c). A configuration

intermediate between these two is shown in Figure 4.1(b). Coplanar capacitive sensors are also

termed “fringing electric field” sensors, in that a fringing electric field is projected away, in the

out-of-plane direction, from the plane of the gap that exists between two coplanar electrodes

of differing potential, as in Figure 4.1(c) [9].

One simple coplanar electrode arrangement is two neighboring rectangular patches [9]. For

higher capacitance and sensitivity, rectangular interdigital electrodes may be used [12]. A prior

work presented valuable design considerations for concentric coplanar sensors [10]. Samples that

are anisotropic, such as fiber-reinforced composites, may benefit from rotationally invariant

coplanar sensors, for example, in the form of a simple disc-and-annulus arrangement or as

interdigital concentric annuli, shown in Figure 4.2 [7][11]. Interdigital capacitive sensors are

advantageous in that interdigitation increases the signal-to-noise ratio. The penetration depth,

an arbitrary yet important measure of the strength of the electric field at a subsurface point, can
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Figure 4.1 Schematic diagram showing transformation: (a) of a parallel plate capacitor; (b)

through an intermediate configuration; and (c) to a fringing field capacitor. ε

denotes the dielectric material and V+/- denotes the electrode voltage and polarity.

be adjusted by manipulating the separation between neighboring electrodes. Increasing spatial

periodicity can even be embedded in one sensor to produce a 3D image of the subsurface

permittivity, as the sensor is scanned across the surface of the test piece [12].

Glass-fiber PMCs are a good example of low-conductivity, primarily dielectric materials

found in structural applications such as aircraft, automobiles, and space and marine vehicles.

The environments and conditions to which these structures are subjected require a high degree

of performance in terms of specific strength, weight savings, and corrosion resistance [13]. As

the name suggests, glass-fiber PMCs are composed of glass fibers, which can be oriented and

woven in many different fashions, infused into a polymer matrix that, when cured, bonds to the

fibers, leaving the final product with high stiffness and strength [14]. The polymer forming the

matrix can be of many types—epoxy, polyimide, and so onbut one that is gaining acceptance

in the aerospace industry because of its good retention of dielectric and mechanical properties

over a wide range of temperatures, is bismaleimide (BMI). BMI composites can be found in

such military applications as F-22 Raptor tactical fighters and are known to provide the highest

composite mechanical properties in service in a thermal environment up to 563 K (290 ◦C) [15].

Dielectric properties of many polymers are known to permanently change when the poly-

mer ages, for example, as noted in prior work, and any such change is capable of yielding a

corresponding change in measured capacitance of a capacitive sensor [16]. In this work, con-

centric interdigital electrodes were chosen as the preferred sensor arrangement so that: first,

measured capacitance was independent of the inherent anisotropy in the structure; and second,

signal-to-noise ratio was good because of the inherently higher capacitance of the interdigital
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Figure 4.2 Concentric interdigital electrode capacitive sensor. Concentric annuli alternate po-

larity with adjacent annuli, providing a high signal-to-noise ratio and a capacitance

that homogenizes the inherently anisotropic permittivity of glass-fiber polymer–

matrix composites.

arrangement, compared with the disc-and-annulus arrangement. Measurements were compared

with those of traditional parallel plate electrodes, made on the same samples.

4.2 Technical background

When an electromagnetic field is applied to a medium, there are several possible responses of

that medium. In one response, free charges (holes or electrons) within the medium are excited

and accelerated in a direction parallel to the electric field, as governed by the Lorentz force law.

Such a material, whose response is dominated by free charges, is referred to as a conductor. In

another response, bound charges within an atom or molecule are displaced toward the source

charges of opposite polarity. The displacement and separation of opposite charges create an

electric dipole, and throughout the medium a net dipole moment is formed that is proportional

to the polarizability of that medium. The combined response of the applied electric field and

the resulting polarization in the medium is represented by its permittivity ε = εrε0, where ε0
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is the permittivity of free space and εr is the relative permittivity, a dimensionless quantity. A

material that is generally dominated by dipole formation and has minimal flow of free charges

is referred to as a dielectric.

When the electric field applied to a dielectric alternates polarity with time, perhaps oscil-

lating at a particular frequency, the dipole attempts to reorient itself parallel to the field with

each cycle. In doing so, the motion of the bound charges is viewed on a macroscopic scale

as a displacement current. In a perfect dielectric, the displacement current leads the electric

field over time by a phase of 90◦; however, real dielectrics are imperfect, as the dipoles may

not completely reorient in the time it takes the field to complete a half-cycle. Thus, the phase

between the displacement current and electric field is reduced and energy is lost as heat since

there is a net positive power, P = V I, when integrated over one cycle. The coexistence of out-

of-phase and in-phase components of permittivity are described materially and mathematically

as a complex permittivity ε∗ = ε′−jε′′, where ε′ is the real part of the permittivity, representing

energy storage; ε′′ is the imaginary part of permittivity, representing energy loss; and j is the

imaginary unit. Maximum power transfer (that is, energy loss as heat, in this system) occurs

at the frequency for which ε′′ is maximum, known as the relaxation frequency.

Polymer macromolecules consist of long chains of repeating monomers, the composition and

structure of which determine the dielectric properties. One significant structural contribution

to the dielectric behavior of a polymer is whether the molecules are polar or nonpolar. Polar

molecules have a net dipole moment as a result of bound charge asymmetry; therefore, the

permittivity of the material as a whole is frequency-dependent since the reorientation of the

molecule or polar subgroup is not instantaneous [17]. Another structural influence on the

dielectric properties of a polymer is the density of cross-links, which are covalent or ionic

bonds that link polymer chains to one another and have the macroscopic effect of making the

polymer more rigid. This reduction in the ability of the molecules to reorient themselves along

the electric field (to polarize) reduces the permittivity [18].

Polymer resins such as BMI and other imides undergo an irreversible cure known as ther-

mosetting via the cross-linking process, which allows the resin to be molded into a permanent

solid form. Reheating to temperatures above the cure temperature does not melt the solidified
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resin, but instead degrades the polymer by changing the microstructure, phase morphology

and chemical composition [19]. Thermal aging in air induces oxygen diffusion into the polymer

that also affects the cross-linking between chains. This change in chemical composition and

microstructure often also changes the polymer permittivity [6].

The real and imaginary components of complex permittivity directly relate to measurable

electrical parameters, capacitance and resistance, which can be readily measured by a device

such as an inductance-capacitance-resistance (LCR) meter. If a polymer sample is placed

between two electrodes that are connected to an LCR meter, the meter applies an alternating

voltage and measures the magnitude and phase difference of the resulting current. The ratio of

these two phasor values is a complex value known as impedance, Z = R− jXC , where R is the

resistive component and XC is the capacitive reactance component. Generally, an LCR meter

is set up to calculate and display the capacitance, C = 1/(ωXC), and the dissipation factor,

D = R/XC . In the case of identical parallel plate electrodes:

ε∗ = (1− jD)
Cd

A
(4.1)

where d is the thickness of the sample and separation of the electrode plates and A is the

area of a single electrode plate. For samples where double-sided inspection is not possible,

the fringing electric field of a coplanar capacitor penetrates the sample, thus influencing the

measured value of capacitance that depends upon the sample permittivity.

4.3 Experimental technique

The bulk of the experimental work was divided into two phases: BMI composite sample

fabrication and thermal aging, and capacitive sensing of the samples using parallel plate and

interdigital coplanar electrodes. The following sections describe the experimental work in detail.

4.3.1 Sample fabrication and preparation

BMI pre-impregnated with glass fiber (prepreg) was purchased. The glass fiber was a style

7781 E-type with a 497A finish coating. Style 7781 is an eight-harness satin type popular in
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Figure 4.3 Thermal cure cycle for the bismaleimide glass-fiber polymer-matrix composite

samples. During the cure, a constant pressure of 586 kPa was applied to the

305× 305 mm2 sample.

the aerospace industry, having a fiber count of 57 × 54 ends per 2.54 cm and a mass density of

303 g/m2. E-type glass is an electrical type glass with 204 filaments of 7.4 µm diameter each,

per fiber, and relative permittivity between 6.3 and 6.6 at 1 MHz [20]. Coating finish 497A is

a silane finish that is designed to undergo addition or condensation reactions with polymeric

resins such as epoxy, phenolic, polyimide, and polyester for better binding to the matrix. The

prepreg was stacked in eight 305 × 305 mm2 plies, vacuum-bagged and inserted into a hot press

for the pressure and thermal cure recipe, shown in Figure 4.3. Breather and bleeder cloths,

typically used in composite fabrication, were not included in this study for the purpose of

creating finished samples with a smoother surface, to reduce uncertainties in capacitive testing.

Finally, the samples underwent a 6 h post-cure at 519 K (246 ◦C) under atmospheric pressure

as prescribed by the manufacturer. The purpose of this post-cure was to maximize the strength

retention of the PMC at elevated temperatures [15].

A number of 38 × 38 mm2 samples were cut from the central area of the cured 305 ×

305 mm2 laminate, avoiding edge variations. All samples were dried at 393 K (120 ◦C) for 4 h
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and stored in a desiccator prior to both thermal aging and dielectric measurements. One group

of three samples acted as a control, undergoing only the drying procedure. Other groups of

three samples were isothermally aged at 548, 598 and 648 K (275, 325 and 375 ◦C). Each of

these was aged for 4 h and allowed to cool in the furnace overnight. Sample mass and thickness,

measured as an average of five points using a digital micrometer, were recorded before and after

thermal aging.

4.3.2 Parallel plate electrode dielectrometry

A dielectric test fixture in conjunction with an LCR meter was used for parallel plate

dielectrometry in this work. The test fixture incorporated a fixed unguarded electrode and a

movable guard electrode, their separation being controlled by a micrometer, Figure 4.4. The

guard electrodes, provided with the test fixture, came in four sizes of two types: one 5 mm

and one 38 mm diameter rigid metal electrode, and one 56 mm and one 20 mm diameter

electrode with a center spring-loaded ball bearing for contacting a secondary electrode in direct

contact with the sample. To reduce possible edge effects in the measurements, a secondary

electrode with 31.75 mm diameter (a 3.175 mm thickness, C26000 brass alloy disc) was used in

conjunction with the 56 mm diameter guard electrode with ball bearing guarded electrode, as

shown in Figure 4.4. The guard electrode was held at the same electric potential as the guarded

secondary electrode, thus virtually eliminating fringing capacitance between the secondary and

unguarded electrodes, ensuring that the field in the material under test was essentially uniform

and parallel as assumed by (4.1). Further, the samples were made as smooth and flat as

possible, by the technique described in the previous section, in order to ensure that the gap

between the parallel plate electrodes was filled by the sample as assumed by (4.1) and contained

no significant pockets of air.

Upon test fixture calibration (performed each time after power-up of the LCR meter), the

samples were placed between the unguarded electrode and the brass disc, and the guarded ball

bearing was brought into contact with the disc and tightened to minimize any air gap between

the sample and the disc electrodes. The capacitance and dissipation factor were measured

at 44 frequencies between 100 Hz and 2 MHz. Using the sample thickness and diameter of
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Figure 4.4 Dielectric test fixture. The sample is sandwiched between the secondary electrode

and the unguarded electrode. The ball bearing electrode makes electrical con-

tact with the secondary electrode when pressed together and the guard electrode

reduces fringing effects.

the secondary electrode, the permittivity of each sample was calculated from the capacitance

measurements using (4.1).

4.3.3 Interdigital electrode dielectrometry

The 24.4 mm diameter sensor employed here and shown schematically in Figure 4.2 con-

sisted of 30 concentric copper annuli interdigitated with 31 annuli of the opposite polarity.

Each annulus was 100 µm wide with 100 µm separation from its neighbor. Two parallel sig-

nal buses, routed radially through the digits, connected all like-polarity digits. The signal

buses terminated at two 1 mm2 pads for making electrical contact with the LCR meter. All

conductive traces were composed of 18 µm thick bare copper deposited on a 310 µm thick glass-

fiber hydrocarbon/ceramic substrate. The relative permittivity of the substrate was measured

independently using a dielectric spectrometer at 1 MHz to be 3.34 ± 0.05 [7].

To achieve repeatable measurements, the sample and sensor were pressed together by means

of a plastic spring-loaded clamp with rotatable jaws. A lab bench surface provided rigid support,

as shown in Figure 4.5. After calibration of the LCR meter probe, the probe tip was pressed
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Figure 4.5 Concentric interdigital dielectrometry setup. The sensor is sandwiched between

the substrate and the bismaleimide glass-fiber polymer-matrix composite sample.

A clamp minimizes possible air gaps and enhances repeatability.

into contact with the sensor contact pads, which were the only parts of the sensor exposed

to the open air after the sample had been pressed to the sensing digits, as shown in Figure

4.5. A manual trigger on the LCR meter initiated a preset frequency sweep, and the sensor

capacitance and dissipation factor were recorded at each frequency point.

4.3.4 Measurement uncertainties

Measurement accuracy is generally contingent on factors particular to the measurement

device, such as frequency, and upon external factors, such as sample dimensions. In this system,

high frequency measurements beyond 10 MHz suffered from dominating inductive reactance in

the probe cables, while the uncertainty of measurements, in particular for the LCR meter

used in this work, increased with decreasing frequency for a given measured capacitance. In

general, samples with a high area-to-thickness ratio were desirable, both reducing fringing field

uncertainty if unguarded electrodes were used and increasing |Z|. As mentioned previously,

air gaps between the electrodes and sample were reduced or eliminated by means of applied

pressure. In the case of PMCs, however, surface roughness existed in the form of a permanent

and regular pattern of air voids on the sample surface. The uncertainty in inferred was low
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Figure 4.6 Bismaleimide glass-fiber polymer-matrix composite samples used in parallel plate

and interdigital capacitive sensing experiments. Each sample is 38× 38 mm2. The

sample set contains: (a) a pristine sample and samples aged at: (b) 548 K (275 ◦C);

(c) 648 K (325 ◦C); and (d) 698 K (375 ◦C).

Table 4.1 Mean percentage mass loss for isothermally-aged bismaleimide glass-fiber polymer–

matrix composite samples. Uncertainties listed are one standard deviation from

mass measurements on three different samples. The mean mass of the samples

prior to aging was 4.12± 0.03 g.

Aging temperature Mass loss (%)

548 K (275 ◦C) 0.203± 0.004

598 K (325 ◦C) 0.54± 0.03

648 K (375 ◦C) 3.3± 0.6

because of this effect in the case of parallel plate electrodes, since the volume occupied by

the air voids was on the order of 0.5 % of the sample volume but was more significant in the

case of measurements using coplanar interdigital electrodes for which the spacing between the

electrodes was on the same order as the surface roughness. For this reason, C was reported for

the interdigital measurements rather than ε′r (real relative permittivity), where ε′r = ε′/ε0 and

ε0 is the permittivity of free space.

4.4 Results

Several changes to the BMI glass-fiber PMC samples were observed due to isothermal aging,

the appearance of which is shown in Figure 4.6. Table 4.1 shows a clear trend in the increase

of sample mass loss with aging temperature, up to 3.3% mass loss for samples aged at 648 K

(375 ◦C), which is due to oxidation of the BMI polymer.
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Figure 4.7 Relative permittivity of isothermally-aged bismaleimide glass-fiber polymer-matrix

composite samples measured using parallel plate electrodes. Each data point is

the mean of three measurements on different samples. Estimated uncertainties are

listed in Table 4.2.

4.4.1 Parallel plate electrode dielectrometry

A reduction in real permittivity with increasing aging temperature was observed, when ε′r

was measured using parallel plate electrodes, shown in Figure 4.7, with a mean reduction of

31 % for samples aged at 648 K (375 ◦C). The dissipation factor shown in Figure 4.8 increased

at low frequencies, below 1 kHz, indicating the likely presence of impurities in the BMI. It also

increased toward a possible maximum just beyond 1 MHz, which is indicative of a dielectric

relaxation characteristic to the BMI polymeric chain. Generally speaking, Figure 4.8 shows a

clear reduction in dissipation factor with increasing aging temperature over the frequency range

measured, suggesting a relaxation shift to higher frequency with increasing aging temperature.

Uncertainties in the measured data are tabulated in Table 4.2.

4.4.2 Interdigital electrode dielectrometry

Capacitance measured using coplanar interdigital electrodes shows a similar trend, Figure

4.9 to measured ε′r, Figure 4.7, with an average reduction of 17 % comparing measurements on
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Figure 4.8 Dissipation factor of the isothermally-aged bismaleimide glass-fiber polymer-ma-

trix composite samples measured using parallel plate electrodes. Each data point is

the mean of three measurements on different samples. Estimated uncertainties are

listed in Table 4.2. Note that the discontinuity in all measurements near 100 kHz

is due to internal switching of LCR meter circuits.

pristine samples with those on samples aged at 648 K (375 ◦C). Measured C for the isolated

sensor (in air) is included in this figure to show the minimum possible capacitance for this

particular sensor. Permittivity extraction from measured capacitance of the interdigital sensor

is not trivial and is very dependent upon surface roughness of the sample, and so was not

attempted in this work. Because of the linear relation between capacitance and permittivity,

however, the relative differences between the variable plots and between Figures 4.7 and 4.9

are comparable. The dissipation factor measured using the interdigital electrodes, Figure 4.10

appears to present a direct current or low-frequency conductivity contribution that resulted

in a linear response in the lower frequencies when plotted on a log-log scale. In dielectric

spectroscopy, such a contribution is typically regarded as a conductivity term σ/ωε0, where σ

is the conductivity, which is appended to the function describing the imaginary permittivity

and, when plotted, results in a linear slope [21][22]. Applying a linear regression for the lower

frequencies, this term was subtracted from the dissipation factor 4.11 to reveal the presence

of any dielectric relaxations. Comparing the data of Figure 4.11 with those of Figure 4.8, a
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Figure 4.9 Measured capacitance of the concentric interdigital electrode sensor when placed on

the surface of isothermally-aged bismaleimide glassfiber polymer-matrix composite

samples. Each data point is the mean of three measurements on different samples.

Estimated uncertainties are listed in Table 4.2.

similar trend is observed, that the magnitude of the peak in D reduces as aging temperature

increases. The significant scatter in data presented below 1 kHz in Figure 4.11 is likely due to

low impedance causing loss of accuracy in the LCR meter measurements in this frequency range.

This is a typical problem for impedance measurement devices and the frequency threshold below

which loss of accuracy is observed also depends on sample properties and electrode geometry.

4.4.3 Measured uncertainties

Uncertainties associated with the data presented in in Figures 4.9, 4.10, and 4.11 are given

in Table 4.2 at 1 kHz and 1 MHz for the parallel plate and interdigital electrode sensors. Gen-

erally speaking, an increase in uncertainty is observed as thermal aging temperature increases,

indicating more variability in the samples as the severity of aging increases. With increasing

frequency, on the other hand, uncertainties in ε′r and C are very similar for both parallel plate

and interdigital sensors. Measurement uncertainties in D, however, show no identifiable trend

as a function of frequency.
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Figure 4.10 Measured dissipation factor of the concentric interdigital sensor when placed on

the surface of the isothermally-aged bismaleimide glass-fiber polymer-matrix com-

posite samples. Each data point is the mean of three measurements on different

samples. The linear asymptotes represent a direct current conductivity effect,

which is subtracted to yield Figure 4.11. Estimated uncertainties are listed in

Table 4.2.

4.5 Discussion

The results presented in this work demonstrate the ability of a single-sided concentric

interdigital electrode sensor to detect changes in the complex permittivity of BMI glass-fiber

PMC as a result of isothermal aging, shown in Figures 4.9 and 4.11. The single-sided sensor

could potentially be used in a handheld probe, such as that presented in prior work, or for

structural health monitoring as a component of an in-situ sensor array [11]. The capacitance

and dissipation factor measured using the interdigital sensor are consistent with the permittivity

and dissipation factor measured using an extant parallel plate electrode technique on the same

samples. Uncertainties in the measured capacitance of the interdigital sensor grew rapidly

with increasing aging temperature, indicating possible growing sample variability as a function

of age. The difference in shape of the dissipation factor response between Figure 4.8 and

Figures 4.10 or 4.11 is most likely due to the different paths that the electric flux took for each

sensor. Whereas the flux permeated the bulk of the sample in a parallel plate arrangement, the



www.manaraa.com

99

Figure 4.11 Measured dissipation factor, from Figure 4.10, with direct current conductivity

contribution subtracted.

interdigital electrode flux was confined nearer to the sample surface, which was prone to collect

various impurities. These impurities may have had a different microstructure and, therefore, a

different dielectric response with frequency.

4.6 Conclusion

With a clear relationship between BMI glass-fiber PMC thermal aging and complex dielec-

tric permittivity established in this work, the next major step is to compare these results with

those of mechanical tests on similar samples, seeking a correlation between dielectric measure-

ments and interlaminar shear strength (ILSS). The establishment of such a link is necessary to

move towards capacitive NDT for inference of ILSS of critical structural composites in the field.

Microstructure analysis may provide useful information toward improving the understanding

of the surface roughness effect on the interdigital measurements of capacitance and insight into

the origins of the low-frequency conductivity contributions observed in Figure 4.10. Further,

the effect of aging regimes that more closely mimic the exposure of in-service material will be

studied in future work.
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Table 4.2 Uncertainties of measurements performed using parallel plate and interdigital elec-

trodes on thermally-aged bismaleimide glass-fiber polymer-matrix composite sam-

ples. Each uncertainty is one standard deviation of the mean values plotted in

Figures 4.9, 4.10, and 4.11, expressed as a percentage (%). Each mean value was

the mean value of measurements on three different samples.

1 kHz

Parallel plate Interdigital

Temperature ε′r D C D

Pristine 2 7 0.3 10

548 K (275 ◦C) 2 2 2 40

598 K (325 ◦C) 4 5 4 30

648 K (375 ◦C) 5 5 4 40

1 MHz

Pristine 2 2 0.3 70

548 K (275 ◦C) 2 4 1 20

598 K (325 ◦C) 4 7 4 30

648 K (375 ◦C) 5 20 4 30
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CHAPTER 5. AN INTERDIGITAL CAPACITIVE CLAMP SENSOR

FOR NONDESTRUCTIVE EVALUATION OF WIRE INSULATION

Featuring excerpts from papers published in

IEEE Sensors Journal

Robert T. Sheldon and Nicola Bowler,

The 2014 Annual Report Conference on Electrical Insulation and Dielectric Phenomena

Emily M. Arvia, Robert T. Sheldon and Nicola Bowler,

&

The 9th International Topical Meeting on Nuclear Plant Instrumentation, Control &

Human-Machine Interface Technologies

Nicola Bowler, Robert T. Sheldon and Emily M. Arvia

5.1 Introduction

During normal service, all insulated wires are exposed to number of degradation mecha-

nisms, such as moisture absorption, extreme temperatures, and mechanical stress. In critical

systems such as aircraft and nuclear reactors, failure of the wire insulation can be potentially

hazardous as these wires often transmit power, navigation and control signals. Although many

wire testing devices and other NDE techniques are commercially available, few are designed to

directly and easily characterize the insulation itself.

One type of commercially-available wire test equipment is a time-domain reflectometer,

which is designed to transmit signals along a wire and measure the time-of-flight of any re-

flected pulses, which can be used to locate breaks into conductor continuity [1]. This technique,

however, does not work well at locating insulation breaks, much less characterize the permit-
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tivity of the insulation. In [1], a technique called partial discharge is developed whereby a high

voltage pulse is transmitted down and insulated wire and degraded insulation regions cause

the signal to partially discharge its energy into the degraded region, which is detectable as a

reflected pulse. This technique requires high voltages and partial discharge currents that may

damage the wire sample. Another commercially-available insulation tester is a resistance tester,

which applies a high voltage between the conductor and an exterior point, and the resulting

current magnitude is proportional to the conductivity of the insulation [2]. Again, high voltages

run the risk of damaging the wire, whereas a measurement of the wire insulation permittivity

can be made at lower voltage and, as shall be shown here, can be used to infer the integrity of

the insulation.

As mentioned in Chapter 1, capacitive sensors are ideal for characterizing low-conductivity

media due to the linear relationship between the measurable quantity of capacitance and the

material property of permittivity. For an insulated wire, the useful geometry of the dual curved

patch electrode sensor presented in [3] was improved upon in [4], by increasing the magnitude

of the measured capacitance thus improving signal-to-noise ratio, with the introduction of a

cylindrical interdigital electrode structure, a schematic diagram of which is shown in Figure 5.2.

In this chapter is presented a practical clamp sensor design, Figure 5.1 to apply the interdigital

electrodes to the surface of wires for inspection. Two different sets of wires were aged in

different controlled environments and the relative change in measured capacitance between

aging conditions was analyzed. Sections 5.2 and 5.3 discuss the clamp design and measured

results on chemically-aged aircraft wire. In Section 5.4, measurements taken using the same

clamp sensor on nuclear power plant wires irradiated with controlled doses of ionizing radiation

are described.

5.2 Clamp sensor design

A practical sensor applicator design, in the form of a plastic spring-loaded clamp, Fig.

5.1, was developed in order to apply and remove the electrodes, the modeled design shown in

Figure 5.2, now attached to two jaw faces, to the surface of a wire-under-test. Each jaw surface

possesses a groove covered with a layer of foam that allows the jaws to cradle the wire and



www.manaraa.com

106

Electrodes

Groove

Signal bus

Output
connector

Figure 5.1 Plastic spring-loaded clamp sensor with inset showing detail of the jaws and inter-

digital electrodes attached to both orange jaws.

press the electrodes onto the wire surface. The signal bus strip passes back along the clamp

handle to an SMA output connector for easy connection to the LCR meter.

The electrode configuration is shown in Figure 5.3. The two patches of seven digits are

connected by a 100-mm-long bus strip, and were also fabricated by American Standard Circuits,

Inc., utilizing 17.8-µm-thick bare copper cladding deposited on a 25.4 µm thick Kapton R©

polyimide film substrate. This substrate was then adhered to the foam in the grooves of each

jaw of the spring-loaded clamp.

This clamp design caters for modest variation in wire sample diameter via its dual-sided

application of interdigital electrodes mounted on compressible foam. In this way, measurements

can be performed using the same sensor on wires of different gauge but it is difficult to mea-

sure parameters such as g accurately. For this reason, it is impractical to attempt to extract

permittivity of the wire insulation with the present probe design, although this has been done

for simpler electrode configurations [7][8][3]. In the experiment that follows, a pristine refer-
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Figure 5.2 Cylindrical interdigital capacitive sensor. The radii of the central conductor, cylin-

der insulation, and sensor substrate are denoted a, b and c, respectively. The elec-

trodes have width w, spacing s, gap g between the two interdigital electrode sides

and length l [4].

Table 5.1 Composition and dimensions of the layers comprising a 20 AWG M5086 wire.

Layer Size (mm)

Tin-coated stranded copper conductor diameter 1.0 ±0.1

PVC thickness (inner layer) 0.22 ±0.03

Glass fiber thickness (middle layer) 0.22 ±0.03

Nylon 6 thickness (outer layer) 0.15 ±0.03

Total diameter 2.2 ± 0.1

ence wire is used for comparison of capacitance values that directly relate to the permittivity

changes that resulted from degradation.

5.3 Measurements on chemically-aged wire

A controlled aging experiment was conducted on M5086/2 wire (Allied Wire & Cable, Inc.)

in order to assess the effectiveness of the interdigital capacitive clamp sensor. The composition

and dimensions of 20 AWG M5086/2 wire are given in Table 5.1.

Six segments of M5086/2 wire, each approximately 10 cm long, were immersed in different

fluids that are commonly found onboard an aircraft, with a seventh pristine segment acting
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Figure 5.3 Planar schematic of the interdigital capacitive sensor used in the plastic spring

clamp. The bus strip is 100 mm long.

as the control wire. The ends of the segments were sealed with paraffin wax to protect the

conductor and the samples were then completely immersed in separate closed glass containers

filled with aircraft cleaner, deicer 50/50, distilled water, hydraulic fluid, 70 % isopropanol

and Jet A fuel for 10 days. Then, each immersed wire segment was removed from the fluid,

thoroughly dried using Kimwipes, and immediately stored in plastic storage bags. The time

from immersion removal to capacitive measurement for each sample was less than one hour.

The capacitance of the sensor was measured at 20 points along the axis of each of the wire

segments and the mean value calculated. Since capacitance is proportional to permittivity, and

because the insulation layers of the wire (especially the outer layer of Nylon 6) may absorb or

react with these chemicals to cause changes to the permittivity, one would expect to observe a

consequent change in the capacitance when compared with a pristine, or non-immersed, wire.

Data from the immersed and pristine samples are shown in Fig. 5.4(a) and are compared with

data taken independently on chemically exposed thin sheets of Nylon 6 (between 0.5 and 0.6 mm

in thickness), which forms the outer layer of M5086/2 wire, using parallel plate electrodes [9].

It is immediately clear from the data shown in Fig. 5.4 that hydraulic fluid and Jet A fuel

(non-polar fluids) had very little impact on the capacitance measured on M5086 wires while the
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other (polar) fluids gave rise to a significant change in measured capacitance, most likely due

to significantly changed dielectric properties of the wire insulation. Hydraulic fluid and jet fuel

effected only a 1.8 % and 2.1 % increase in capacitance, respectively, from that of the pristine

wire. On the other hand, the wire immersed in 70 % isopropanol exhibited the largest change in

capacitance; an 18.6 % increase. Wires immersed in cleaner, deicer and distilled water showed

more moderate increases of 7.8 %, 6.1 % and 4.5 %, but these are still significant changes

compared with the pristine wire capacitance. For comparison, experiments were performed

on sheets of pure Nylon 6, which constitutes the outer insulation layer on M5086/2 wire,

Table 5.1. Capacitance measured on chemically-aged Nylon 6 after an 8-day submersion using

parallel plate electrodes is shown in Fig. 5.4(b). These results correlate well with the basic

pattern of experimental results obtained from pure Nylon 6 samples, indicating the feasibility

of using the clamp sensor presented here for evaluation of wire insulation degradation. The

measurements performed on samples immersed in cleaning fluid showed the largest standard

deviation in the experiments, partially explaining the largest discrepancy seen, for this case,

between the interdigital and parallel plate measurements of capacitance, and also indicating

that the chemical absorption was highly dependent on position along both test pieces in the

case of immersion in cleaner.

5.4 Measurements on irradiated wires

The integrity of nuclear power plant cables has been identified as a major concern that

may limit the goal of extending the life of light-water reactor power plants [10]. Over extended

periods of service, the polymeric insulation and jacket materials of a typical low- or medium-

voltage power cable, or of a control cable, degrade due to exposure to heat, ionizing radiation

and moisture, etc. It is desirable to monitor these changes nondestructively and to predict the

remaining-useful-life of the cable if possible. In an oxygenated environment, exposure to heat

and ionizing radiation tends to cause oxidative aging in polymer systems. Depending on the

polymer, oxidation usually leads to changes in dielectric constant and loss (real and imaginary

parts of permittivity) of the material which, in principle, can be monitored by capacitive sensing

[11][12][13].
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Figure 5.4 Comparison of the interdigital and parallel plate electrode capacitance measure-

ments when applied to (a) M5086 aircraft wire and (b) pure Nylon 6 sheet samples

after a 10-day and 8-day submersion in the given fluids, respectively. The error

bars for M5086 wire are ± 1 standard deviation of 20 measurements while those

for the Nylon 6 represent ± 1 standard deviation of 3 measurements [9]. Both

experiments utilized the same Agilent E4980A Precision LCR Meter at 1 MHz.

In this work, the clamp sensor design in Section 5.2 is used to measure the capacitance (C)

and dissipation factor (D) changes of the sensor due to controlled amounts of ionizing radiation

to which two types of insulating materials commonly found in nuclear power plants: flame-

retardant ethylene-propylene rubber (FR-EPR) and silicone rubber (SIR). Measured results are

compared with the industry standard test of elongation-at-break (EAB), which is destructive,

and indenter modulus (IM), which is a relatively new mechanical non-destructive test.

Elongation-at-break, indenter modulus and capacitance measurements were performed as

follows:

• EAB—Tubular insulation specimens approximately 150-mm-long were prepared by re-

moving the central conductor. The specifications of the tensile test are provided in [14].
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Each specimen was gripped firmly in the chuck of a tensile tester and a tension rate of 500

mm/min was applied until failure of the sample, at which moment the EAB was recorded.

Three nominally-identical samples were tested per aging condition and the mean value of

EAB reported [15].

• IM—An indenter may be used to make nondestructive measurements of mechanical prop-

erties of wire insulation material. The Indenter Polymer Aging Monitor (IPAM) used in

this study was provided by Analysis and Measurement Services Corporation. A small

indentation is made in the insulation material by the rounded pyramidal tip of the device

and “indenter modulus” (IM) is recorded. IM has unit Nm−1 rather than Nm−2 as in the

case of elastic modulus. Full detail is provided in [16]. Nine measurements were taken at

different points along the length of an 8-cm-long section of insulated wire, with central

conductor intact.

• C/D—The capacitive sensor used in these tests consisted of a plastic spring-loaded clamp

with interdigital electrodes attached to each jaw. The clamp sensor is applied to the

sample wire and C and D are influenced by the dielectric properties of the wire insulation.

The sensor is connected to an LCR meter by which C and D may be measured, after

system calibration, at frequencies specified by the user. In this study, C and D were

recorded at 1 kHz and 1 MHz. Each wire was inserted between the orange jaws of the

clamp and C and D recorded at 10 different locations along each wire. All samples were

tested on the same day in order to minimize uncertainties arising from possible variations

in temperature and humidity, etc.

The FR-EPR and SIR insulated samples studied here were both supplied by the same

company. The FR-EPR samples were of three colors whereas the SIR samples were all white.

All samples were aged by exposure at radiation level 100 Gy/h for various times, and at

temperatures 80, 90 or 100 ◦C (FR-EPR) and 100 or 135 ◦C (SIR) as indicated in Tables 5.2

and 5.3, respectively. Forty-seven FR-EPR samples and fifty-one SIR samples were studied.
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Table 5.2 Exposure duration of FR-EPR coated wire samples at radiation level 100 Gy/h and

temperatures 80, 90 or 100 ◦C.

Wire insulation color Exposure

and designator number conditions

Black White Red T (◦C) time (h)

- - 151 80 2,360

- - 152 80 2,644

111 131 - 80 2,881

112 132 - 80 3,545

111 131 - 80 2,881

113 133 153 80 3,948

114 134 154 80 4,619

- - 155 90 1,877

- - 156 90 2,123

115 135 157 90 2,383

116 136 158 90 2,714

117 137 159 90 3,047

118 138 160 90 3,784

119 139 161 90 4,619

120 140 162 90 5,781

- - 163 100 1,177

- - 164 100 1,390

- - 165 100 1,554

- - 166 100 1,791

121 141 167 100 1,981

122 142 168 100 2,360

123 143 - 100 2,995

124 144 169 100 5,280
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Table 5.3 Exposure duration of SIR coated wire samples at radiation level 100 Gy/h and

temperatures 100 or 135 ◦C.

Wire insulation color Exposure

and designator number conditions

White 1 White 2 White 3 T (◦C) time (h)

411 431 451 100 282

412 432 452 100 425

413 433 453 100 595

414 434 454 100 828

413 433 453 100 595

415 435 455 100 1,139

416 436 456 100 1,497

417 437 457 100 1,970

418 438 458 100 3,046

419 439 459 100 3,856

420 440 460 135 162

421 441 461 135 282

422 442 462 135 425

423 443 463 135 595

424 444 464 135 948

425 445 465 135 1,497

426 446 466 135 2,164

427 447 467 135 3,569
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5.4.1 FR-EPR measured results

Measured EAB data are plotted in Figure 5.5. It is clear that EAB declines steeply with

increasing aging time, ranging from over 200 % for pristine samples to almost zero for those

most severely aged. Measured IM data are plotted in Figure 5.6. It is clear that IM increases

with increasing aging time. The uncertainty in IM, here a measure of the insulation variability

along each sample, also increases with increasing aging time. Measured C and D data are

plotted in Figures 5.7 and 5.8, for frequencies 1 kHz and 1 MHz, respectively. Both C and D

increase as a function of increasing aging time.

5.4.2 SIR measured results

Measured EAB data for SIR insulation are plotted in Figure 5.9. The mean value of

measurements on three nominally-identical samples is reported. EAB declines quickly with

increasing aging time, from approximately 320 % for pristine SIR to around 30 % for those

samples aged for 3,569 hours. Similar trends have been observed for FR-EPR insulation al-

though EAB for pristine samples in that case was found to be lower than for SIR; between

approximately 220 and 270 %, depending on the color.

Measured IM data for SIR insulation are plotted in Figure 5.10. The mean value of mea-

surements on nine nominally-identical samples is reported. IM increases with increasing aging

time from approximately 8 N/mm for pristine samples to more than 20 N/mm for the most

severely aged samples. In the case of FR-EPR, IM increases from around 16 N/mm for pristine

samples to more than 30 N/mm for the most severely aged samples.

Capacitance and dissipation factor data for SIR insulation, measured at frequencies 1 kHz

and 1 MHz, are plotted in Figures 5.11 and 5.12, respectively. The mean value of measurements

on 10 nominally-identical samples is reported. C and D data obtained for samples 411 through

427 are noticeably smaller in magnitude than those obtained for samples 431 through 467.

This behavior did not change after repeating the measurements. C measured on samples 431

through 467 shows a reduction of approximately 0.7 % for severely aged samples compared

with pristine samples whereas there is no obvious trend in D as a function of aging time. These



www.manaraa.com

115

Figure 5.5 Measured elongation-at-break of FR-EPR wire samples listed in Table 5.2. The

mean of 3 measurements per aging condition is plotted.

Figure 5.6 Measured indenter modulus of FR-EPR wire samples listed in Table 5.2. The mean

and standard deviation of 9 measurements per aging condition is plotted.
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Figure 5.7 Measured capacitance and dissipation factor of FR-EPR wire samples listed in

Table 5.2, at 1 kHz. The mean and standard deviation of 10 measurements per

aging condition is plotted.
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Figure 5.8 Measured capacitance and dissipation factor of FR-EPR wire samples listed in

Table 5.2, at 1 MHz. The mean and standard deviation of 10 measurements per

aging condition is plotted.
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observations are very different than those on aged FR-EPR, in which increases in capacitance

and dissipation factor of up to approximately 2.5 % and 150 %, respectively, were observed

comparing severely-aged with pristine samples.

5.4.3 Correlation of C and D with EAB and IM

Correlation values between C and D and EAB and IM at 1 kHz and 1 MHz are listed in Table

5.4, where correlation values of 0.85 or greater are highlighted in bold. From Table 5.4 it can be

seen that the pattern of stronger correlations between the measured quantities is different for

FR-EPR and SIR. In the case of FR-EPR, it can be seen that the higher correlation values are

between IM and D, for all sample colors. Additionally, for red insulation, very high (> 0.94)

correlation values are obtained between IM and C, and D. For black insulation, correlation

values are lower overall, whereas those observed for white insulation fall between those for

black and red samples. It is also concluded, therefore, that the colorant added to FR-EPR

has a significant impact on the relationship between mechanical and dielectric properties of

those samples. This is supported by the fact that most polymers are colored using pigments—

dry powders dispersed in the polymer—which are dispersed to achieve different colors using

different chemicals. Polymer electrical resistivity is also influenced by the use of different ionic

or polar pigments, as well as soluble salts used during manufacturing [17], which has a direct

relationship with D.

In the case of SIR the strongest correlation exists between IM and EAB. These results in

turn reflect the strength of the response (sensitivity) of the individual indicators to the aging

of each polymer. For example, FR-EPR exhibits ∼150 % change in D comparing most strongly

aged with pristine samples, whereas there is no obvious trend in D as a function of aging in

SIR. Taken together, these results confirm that polymers aged under similar conditions display

responses that are particular to the individual polymer. One implication for nondestructive

evaluation or monitoring of aging polymers is that the most sensitive indicator of aging whether

it be electrical or mechanical is not the same for all polymers.
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Figure 5.9 Measured elongation-at-break of SIR wire samples listed in Table 5.3. The mean

of 3 measurements per aging condition is plotted.

Figure 5.10 Measured indenter modulus of SIR wire samples listed in Table 5.3. The mean

and standard deviation of 9 measurements per aging condition is plotted.
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Figure 5.11 Measured capacitance and dissipation factor of SIR wire samples listed in Table

5.3, at 1 kHz. The mean and standard deviation of 10 measurements per aging

condition is plotted.
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Figure 5.12 Measured capacitance and dissipation factor of SIR wire samples listed in Table

5.3, at 1 MHz. The mean and standard deviation of 10 measurements per aging

condition is plotted.
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5.5 Conclusion

Correlations evaluated on measurements of elongation-at-break, indenter modulus, capac-

itance and dissipation factor, taken on aged flame-resistant ethylene-propylene rubber and

silicone rubber, are strongest between indenter modulus and dissipation factor for FR-EPR

and between indenter modulus and elongation-at-break for SIR. This suggests that the best

nondestructive evaluation technique for monitoring aging wire and cable insulation is dependent

on the polymer material. In future, therefore, a wider range of polymer insulation materials

will be studied in order to inform choice of the best NDE method for monitoring aging of

insulation polymers. Further, breakdown voltage will be measured on aged samples in order

to evaluate the merit of developing a new acceptance criterion for cable insulation based on

breakdown voltage rather than EAB.
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Table 5.4 Magnitude of correlation values between measured elongation-at-break (EAB), in-

denter modulus (IM), capacitance (C) and dissipation factor (D) at two frequencies.

Cross-correlation values with magnitude equal to or greater than 0.85 are written

in bold font.

FR-EPR

Black White Red Average

EAB IM EAB IM EAB IM EAB IM

IM 0.79 1 0.78 1 0.75 1 0.77 1

C (1 kHz) 0.74 0.81 0.68 0.90 0.76 0.97 0.64 0.82

C (1 MHz) 0.73 0.77 0.67 0.89 0.72 0.96 0.62 0.79

D (1 kHz) 0.66 0.88 0.71 0.92 0.76 0.96 0.69 0.92

D (1 MHz) 0.73 0.86 0.71 0.92 0.88 0.94 0.77 0.91

SIR

IM 0.91 1 0.92 1 0.91 1 0.91 1

C (1 kHz) 0.34 0.54 0.89 0.87 0.76 0.89 0.49 0.56

C (1 MHz) 0.35 0.54 0.85 0.86 0.69 0.82 0.48 0.56

D (1 kHz) 0.24 0.20 0.00 0.07 0.23 0.29 0.38 0.16

D (1 MHz) 0.39 0.25 0.50 0.57 0.38 0.24 0.32 0.02
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CHAPTER 6. GENERAL CONCLUSION

6.1 Discussion

The research presented in this dissertation is motivated by a need for new nondestructive

evaluation techniques in both the aerospace and nuclear power industries for the purposes

of characterizing important and critical low-conductivity materials, such as outer surfaces of

aeronautical structures and wire insulation. Presentation of this research fell into two broad

categories: radio frequency sensors and capacitive sensors, with each category further divided

into two chapters.

In Chapter 1, a literature survey discussed the many types of RF and capacitive sensors that

have been developed for theoretical or practical use. Patch antenna sensors were introduced

in Chapter 2, along with a full existing model for calculation of the resonant frequency and

quality factor of the sensor due to various low-conductivity materials placed in its near-field

sensing region. Each component of the model was discussed in detail, as each has significant

influence on the final outputs. In Chapter 3, an input impedance model was discussed in

detail that described each contribution from resonant frequency, quality factor and feeding

point to the quantity of complex impedance, which can be calculated from the measurable

S-parameter outputs of a vector network analyzer. A new method of resonant frequency and

Q-factor determination from measured values that focuses on measured impedance rather than

S-parameters, as is conventional, was presented. A variety of well-characterized microwave

dielectric samples were tested experimentally using a realized patch sensor, designed using the

model of Chapter 2 for X-band operation. Excellent agreement with the modeled results for

resonant frequency was obtained, while the results for quality factor demonstrate a level of

uncertainty that is dependent upon both the model and the measurement method.
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Chapter 4 presents a concentric, coplanar interdigital capacitive sensor designed for char-

acterization of glass-fiber polymer-matrix composites. The specific polymer of interest was

bismaleimide, which has good mechanical functionality at high temperatures. Glass-fiber

bismaleimide-matrix samples were isothermally aged at temperatures around and above the

polymer functional limit known in literature and capacitance and dissipation factor measure-

ments were obtained for each sample. Significant changes in the permittivity of the samples

with temperature were observed, demonstrating the potential usefulness of such a nondestruc-

tive technique to detect degraded regions of critical low-conductivity structures, such as aircraft

and pipelines.

Finally, Chapter 5 discussed a cylindrical interdigital capacitive sensor mounted on a hand-

held spring-loaded clamp for simple and practical measurements on wiring insulation in the

field. In the first work presented, aircraft wire samples were immersed in liquid chemicals

commonly found in aircraft environments, such as water, jet fuel, and cleaning fluid. Significant

changes in measured capacitance of the sensor were observed for wires immersed in polar fluids,

while little change was observed for non-polar immersion. The results visually correlate with

separate experiments performed using parallel plate capacitors on pure sheets of Nylon 6, the

same material as that forming outer layer of the aircraft wires. The last section discusses a set

of experiments using the same sensor on a large set of wires irradiated for various durations with

ionizing radiation. Measured capacitance and dissipation factor were compared with measured

elongation-at-break, an accepted destructive industry testing standard, and indenter modulus,

a more recent mechanical nondestructive test. The capacitive sensor results correlated well with

indenter modulus for flame-retardant ethylene-propylene rubber-insulated wires, while silicone

rubber-insulated wires showed better correlation between indenter modulus and elongation-at-

break, indicating that mechanical and electrical testing of wire insulation each have different a

different sensitivity to the insulation polymer.

6.2 Recommendations for future research

Numerous paths for design and measurement interpretation improvements are recommended

for future work. Regarding the patch antenna sensor, the next step is to develop a robust
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inversion model that can determine the permittivity and loss tangent of an unknown layer within

a multilayer sample, provided that all other layer parameters are known. If no information is

known about the layers, then the entire stack can be assumed to be a single effective layer with

effective dielectric parameters, which is particularly useful to model the behavior of the entire

dielectric stack due to an incident radar pulse, for the calculation of radar cross-section for

example. Once a robust inversion model has been developed, the sensor can be scanned over

a surface to produce two images: one for relative permittivity and one for loss tangent, either

of the single unknown layer or the total effective layer. The single patch antenna sensor may

also be expanded to a linear array to eliminate the need to scan in one dimension. This would

benefit from reductions in the patch dimensions to improve spatial resolution.

For both the capacitive sensors presented here, an inversion model is also suggested that

can provide the actual dielectric properties of an unknown layer or effective layer of either

glass-fiber composites or wire insulation. Also, measurements currently require connection to

a bulky, heavy and expensive piece of external test equipment via a coaxial cable that alters

the measurement if it is moved. A new method of built-in measurement circuit and wireless

data transmission is suggested to minimize this uncertainty in actual field measurements.
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